Design of a Novel Microlens Array and Imaging System for Light Fields
Abstract
1. Introduction
2. Principle of the New Light Field Imaging System
2.1. System Scenario
2.2. Design of Imaging System Structure
2.3. Design Method for a Novel Four-Focal-Length Square Microlens Array
2.3.1. Analysis of Microlens Array Arrangement
2.3.2. Theory of Multifocal Microlens Arrays to Extend the Depth of Field
2.3.3. Design and Optimization of Sub-Microlens
3. Simulation, Analysis, and Discussion
3.1. Design and Analysis of Sub-Microlens
3.2. Design and Analysis of a New Light Field Imaging System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, M.K.; Park, C.S.; Hwang, Y.S.; Kim, E.S.; Choi, D.Y.; Lee, S.S. Light-Field Imaging: Virtual-Moving Metalens Array Enabling Light-Field Imaging with Enhanced Resolution (Advanced Optical Materials 21/2020). Adv. Opt. Mater. 2020, 8, 2070085. [Google Scholar] [CrossRef]
- Lien, M.-B.; Liu, C.-H.; Chun, I.Y.; Ravishankar, S.; Nien, H.; Zhou, M.; Fessler, J.A.; Zhong, Z.; Norris, T.B. Ranging and light field imaging with transparent photodetectors. Nat. Photonics 2020, 14, 143–148. [Google Scholar] [CrossRef]
- Yu, T.; Rodriguez, F.; Schedin, F.; Kravets, V.G.; Zenin, V.A.; Bozhevolnyi, S.I.; Novoselov, K.S.; Grigorenko, A.N. Nanoscale light field imaging with graphene. Commun. Mater. 2022, 3, 40. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, G.; Yu, M.; Xu, H.; Ho, Y.-S. Learning to simultaneously enhance field of view and dynamic range for light field imaging. Inf. Fusion 2023, 91, 215–229. [Google Scholar] [CrossRef]
- Chen, L.; Xu, C.; Li, J.; Zhang, B. A 3D measurement method of bubbles based on edge gradient segmentation of light field images. Chem. Eng. J. 2023, 452, 139590. [Google Scholar] [CrossRef]
- Gershun, A. The light field. J. Math. Phys. 1939, 18, 51–151. [Google Scholar] [CrossRef]
- Yang, N.; Chang, K.; Tang, J.; Xu, L.; He, Y.; Huang, R.; Yu, J. Detection method of rice blast based on 4D light field refocusing depth information fusion. Comput. Electron. Agric. 2023, 205, 107614. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, L.; Zeng, L.; Yan, T.; Zhan, Y. Joint upsampling for refocusing light fields derived with hybrid lenses. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Feng, X.; Ma, Y.; Gao, L. Compact light field photography towards versatile three-dimensional vision. Nat. Commun. 2022, 13, 3333. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, P.; Xu, K.; Zhang, P.; Lau, R.W. Weakly-supervised salient object detection on light fields. IEEE Trans. Image Process. 2022, 31, 6295–6305. [Google Scholar] [CrossRef]
- Ko, K.; Koh, Y.J.; Chang, S.; Kim, C.-S. Light field super-resolution via adaptive feature remixing. IEEE Transactions on Image Process. 2021, 30, 4114–4128. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.K.; Liu, X.; Wu, Y.; Zhang, J.; Yuan, J.; Zhang, Z.; Tsai, D.P. A meta-device for intelligent depth perception. Adv. Mater. 2023, 35, 2107465. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Jang, K.-W.; Bae, S.-I.; Jeong, K.-H. Multi-functional imaging inspired by insect stereopsis. Commun. Eng. 2022, 1, 39. [Google Scholar] [CrossRef]
- Vogt, N. Volumetric imaging with confocal light field microscopy. Nat. Methods 2020, 17, 956. [Google Scholar] [CrossRef]
- Fu, K.; Jiang, Y.; Ji, G.-P.; Zhou, T.; Zhao, Q.; Fan, D.-P. Light field salient object detection: A review and benchmark. Comput. Vis. Media 2022, 8, 509–534. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, H.; Xiao, Z.; Guillemot, C. A light field FDL-HCGH feature in scale-disparity space. IEEE Trans. Image Process. 2022, 31, 6164–6174. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, S.; Liu, P.; Zhang, Y.; Yan, Q.; Guo, T.; Zhou, X.; Wu, C. Improved depth of field of the composite micro-lens arrays by electrically tunable focal lengths in the light field imaging system. Opt. Laser Technol. 2022, 148, 107748. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; He, C.; Geng, G.; Li, J.; Jing, X.; Wang, Y.; Huang, L. Metasurface-Based Structured Light Sensing without Triangulation. Adv. Opt. Mater. 2024, 12, 2302126. [Google Scholar] [CrossRef]
- Liu, F.; Hou, G. Depth estimation from a hierarchical baseline stereo with a developed light field camera. Appl. Sci. 2024, 14, 550. [Google Scholar] [CrossRef]
- Xing, S.; Sang, X.; Cao, L.; Guan, Y.; Li, Y. Medical volume data real-time optical reconstruction on light field display with a directional diffuser. Optik 2023, 313, 171166. [Google Scholar] [CrossRef]
- Li, Q.; van de Groep, J.; White, A.K.; Song, J.-H.; Longwell, S.A.; Fordyce, P.M.; Quake, S.R.; Kik, P.G.; Brongersma, M.L. Metasurface optofluidics for dynamic control of light fields. Nat. Nanotechnol. 2022, 17, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, F.; Cheng, X.; Chen, S. Masked Generative Light Field Prompting for Pixel-Level Structure Segmentations. Research 2024, 7, 0328. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Yan, S.; Wang, L.; Chang, Y.; Liu, H. High-Quality Light Field Microscope Imaging Based on Microlens Arrays. J. Microelectromechanical Syst. 2024, 33, 296–303. [Google Scholar] [CrossRef]
- Yi, L.; Hou, B.; Zhao, H.; Liu, X. X-ray-to-visible light-field detection through pixelated colour conversion. Nature 2023, 618, 281–286. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.; Miao, L.; Fang, F.; Jiang, Z.; Zhang, X. Measurement Technologies of Light Field Camera: An Overview. Sensors 2023, 23, 6812. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Yu, C.; Zhou, H.; Wang, R.; Zhao, Z.; Ji, Y.; New, T.; Qi, F. Spatial resolution enhancement with line-scan light-field imaging. Opt. Lett. 2023, 48, 5316–5319. [Google Scholar] [CrossRef]
- Cha, Y.-G.; Na, J.; Kim, H.-K.; Kwon, J.-M.; Huh, S.-H.; Jo, S.-U.; Kim, C.-H.; Kim, M.H.; Jeong, K.-H. Microlens array camera with variable apertures for single-shot high dynamic range (HDR) imaging. Opt. Express 2023, 31, 29589–29595. [Google Scholar] [CrossRef]
- Kim, D.-M.; Kang, H.-S.; Hong, J.-E.; Suh, J.-W. Light field angular super-resolution using convolutional neural network with residual network. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 595–597. [Google Scholar] [CrossRef]
- Li, T.-J.; Li, S.; Yuan, Y.; Liu, Y.-D.; Xu, C.-L.; Shuai, Y.; Tan, H.-P. Multi-focused microlens array optimization and light field imaging study based on Monte Carlo method. Opt. Express 2017, 25, 8274–8287. [Google Scholar] [CrossRef]
- Huang, P.; He, C.; Fan, B.; Dong, X. An optimization method of dynamic patterns based on aspheric microlens array. Optik 2019, 179, 592–598. [Google Scholar] [CrossRef]
Standard Surface Shape | Single-Sided Even Aspheric Surfaces | Double-Sided Even Aspheric Surfaces | |
---|---|---|---|
Diameter (μm) | 100 | 100 | 100 |
Thickness (mm) | 0.05 | 0.05 | 0.05 |
Material | PMMA | PMMA | PMMA |
Radius of curvature | Front surface: 0.548 Rear surface: ∞ | Front surface: 0.258 Rear surface: ∞ | Front surface: 0.511 Rear surface: −0.505 |
Cone coefficient | — | Front surface: −1 Rear surface: 0 | Front surface: −2 Rear surface: −2 |
Parameter | Specification |
---|---|
Radius of the surface (mm) | ±0.002 |
Conic of the surface | ±0.05 |
Thickness (mm) | ±0.005 |
Index | ±0.001 |
(mm) | (mm) | ||
---|---|---|---|
Single focal length | 2.420 | 3.948 | 1.528 |
Four focal length | 0.523 | 10.753 | 10.05 |
Component | Parameter | Value |
---|---|---|
Main lens | Focal distance (mm) | 100 |
Microlens array | Aperture (mm) | 20 |
Focal length (mm) | 0.5 | |
Diameter (mm) | 0.1 | |
Number of sub-microlens | 100 × 100 | |
Imaging sensor | Spatial resolution | 1280 × 1024 |
Image size (μm) | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, P.; Zheng, X.; Liu, H.; Zhao, Y.; Sun, X.; Liu, W.; Zhou, S. Design of a Novel Microlens Array and Imaging System for Light Fields. Micromachines 2024, 15, 1166. https://doi.org/10.3390/mi15091166
Li Y, Li P, Zheng X, Liu H, Zhao Y, Sun X, Liu W, Zhou S. Design of a Novel Microlens Array and Imaging System for Light Fields. Micromachines. 2024; 15(9):1166. https://doi.org/10.3390/mi15091166
Chicago/Turabian StyleLi, Yifeng, Pangyue Li, Xinyan Zheng, Huachen Liu, Yiran Zhao, Xueping Sun, Weiguo Liu, and Shun Zhou. 2024. "Design of a Novel Microlens Array and Imaging System for Light Fields" Micromachines 15, no. 9: 1166. https://doi.org/10.3390/mi15091166
APA StyleLi, Y., Li, P., Zheng, X., Liu, H., Zhao, Y., Sun, X., Liu, W., & Zhou, S. (2024). Design of a Novel Microlens Array and Imaging System for Light Fields. Micromachines, 15(9), 1166. https://doi.org/10.3390/mi15091166