Modeling and Analysis of Wide Frequency Band Coaxial TSV Transmission Interconnect
Abstract
:1. Introduction
- (1)
- Accurate equivalent circuit model containing CTSV, RDL, and bump is built.
- (2)
- Due to the accuracy of distributed parameter circuits at high frequencies [21], the equivalent circuit model can perfectly match the actual situation more than 100 GHz.
- (3)
- The influence of different parameters on transmission characteristics of the CTSV interconnect is studied, providing a basis for the CTSV interconnect design.
2. 3D Structural Modeling and Equivalent Circuit Extraction of the CTSV Interconnect
2.1. Equivalent Circuit Extraction of the CTSV
2.2. Equivalent Circuit Extraction of the RDL
2.3. Equivalent Circuit Extraction of the Bump
3. Simulation and Verification
4. Parametric Analysis
4.1. Scanning Analysis of CTSV Height
4.2. Scanning Analysis of RDL Width and Thickness
4.3. Scanning Analysis of Bump Height
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Chen, W.J.; Lin, J.; Chan, M.H.; Lo, T.; Xu, B.; Hung, L.Y.; Kao, N.; Jiang, D.S.; Wang, Y.-P. 3DIC Stacking Process Investigation by Soldering Bonding Technology. In Proceedings of the 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 31 May–3 June 2022; pp. 1121–1125. [Google Scholar]
- Lu, R.; Chuang, Y.C.; Wu, J.L.; He, J. Reliability Challenges from 2.5D to 3DIC in Advanced Package Development. In Proceedings of the 2023 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 26–30 March 2023; pp. 1–4. [Google Scholar]
- Kolesov, V.; Rajan, V.; Nagisetty, R. 3DIC Design Challenges, Early Solutions and Future Recommendations. In Proceedings of the 2021 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 25–30 April 2021; pp. 1–4. [Google Scholar]
- Chandra, A.; Khan, M.; Patidar, A.; Takashima, F.; Goel, S.K.; Shankaranarayanan, B.; Nguyen, V.; Tyagi, V.; Arora, M. A Case Study on IEEE 1838 Compliant Multi-Die 3DIC DFT Implementation. In Proceedings of the 2023 IEEE International Test Conference (ITC), Anaheim, CA, USA, 7–15 October 2023; pp. 11–20. [Google Scholar]
- Xu, Z.; Lu, J.-Q. Three-Dimensional Coaxial Through-Silicon-Via (TSV) Design. IEEE Electron Device Lett. 2012, 33, 1441–1443. [Google Scholar] [CrossRef]
- Qu, S.; Zhang, M.; Tong, J.; Zhang, R.; Liu, Y.; Jia, Y.; Li, J.; Xie, N. LWSFACE: Light-Weighted Weakly-Supervised 3D Facial Texture Reconstruction From a Single Image. In Proceedings of the 2023 8th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC), Beijing, China, 3–5 November 2023; pp. 142–146. [Google Scholar]
- Hammami, O.; M’Zah, A.; Hamwi, K. Design of 3D-IC for butterfly NOC based 64 PE-multicore: Analysis and design space exploration. In Proceedings of the 2011 IEEE International 3D Systems Integration Conference (3DIC), Osaka, Japan, 31 January–2 February 2012; pp. 1–4. [Google Scholar]
- Smith, L.J. 3D SiP with embedded chip providing integration solutions for power applications. In Proceedings of the 2016 International Symposium on 3D Power Electronics Integration and Manufacturing (3D-PEIM), Raleigh, NC, USA, 13–15 June 2016; pp. 1–17. [Google Scholar]
- Li, L.; Ton, P.; Nagar, M.; Chia, P. Reliability Challenges in 2.5D and 3D IC Integration. In Proceedings of the 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2017; pp. 1504–1509. [Google Scholar]
- Ni, T.; Chang, H.; Zhang, X.; Xiao, H.; Huang, Z. Research on physical unclonable functions circuit based on three dimensional integrated circuit. IEICE Electron. Express 2018, 15, 20180782. [Google Scholar]
- Araga, Y.; Nagata, M.; De Vos, J.; Van der Plas, G.; Beyne, E. A study on substrate noise coupling among TSVs in 3D chip stack. IEICE Electron. Express 2018, 15, 20180460. [Google Scholar] [CrossRef]
- Ho, S.W.; Yoon, S.W.; Zhou, Q.; Pasad, K.; Kripesh, V.; Lau, J.H. High RF performance TSV silicon carrier for high frequency application. In Proceedings of the 2008 58th Electronic Components 369 and Technology Conference, Lake Buena Vista, FL, USA, 27–30 May 2008; pp. 1946–1952. [Google Scholar]
- Liu, L.; Wang, F.; Yin, X.; Sun, C.; Li, X.; Li, Y.; Yu, N.; Yang, Y. Optimization of 3-D IC Routing Based on Thermal Equalization Analysis. IEEE Trans. Device Mater. Reliab. 2024, 24, 250–259. [Google Scholar] [CrossRef]
- Wang, F.J.; Yu, N.M. Study on thermal stress and keep-out zone induced by Cu and SiO2 filled coaxial-annular through-silicon via. IEICE Electron. Express 2015, 12, 20150844. [Google Scholar] [CrossRef]
- Frank, K.H.K.; Tai, D.; Peng, S.; Chien, F.L. Comparable Study for Redistribution Layers in FO POP RDL First and Last (Fan-Out Package on Package). In Proceedings of the 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 30 May–2 June 2023; pp. 253–257. [Google Scholar]
- Kim, M.J.; Lee, S.H.; Suk, K.L.; Jang, J.G.; Jeon, G.-J.; Yun, H.J.; Hong, J.; Choi, J.-Y.; Lee, W.J.; Jung, S.; et al. Novel 2.5D RDL Interposer Packaging: A Key Enabler for the New Era of Heterogenous Chip Integration. In Proceedings of the 2021 IEEE 71st Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 1 June–4 July 2021; pp. 321–326. [Google Scholar]
- Huang, Y.W.; Zhan, C.J.; Yu-Min, L.; Juang, J.Y.; Huang, S.Y.; Chen, S.M.; Fan, C.-W.; Cheng, R.-S.; Chao, S.-H.; Lin, C.K.; et al. Effects of bump height and UBM structure on the reliability performance of 60µm-pitch solder micro bump interconnections. In Proceedings of the 2014 International Conference on Electronics Packaging (ICEP), Toyama, Japan, 23–25 April 2014; pp. 612–617. [Google Scholar]
- Qian, L.; Xia, Y.; He, X.; Qian, K.; Wang, J. Electrical Modeling and Characterization of Silicon-Core Coaxial Through-Silicon Vias in 3-D Integration. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1336–1343. [Google Scholar] [CrossRef]
- Wang, F.; Li, H.; Yu, N. Investigation on impact of substrate on low-pass filter based on coaxial TSV. IEICE Electron. Express 2019, 16, 20180992. [Google Scholar] [CrossRef]
- Ma, S.; Guo, J.; Sun, H.; Yu, Y. The comparison and analysis of lumped parameter equivalent circuits of transmission line. In Proceedings of the 2011 International Conference on Advanced Power System Automation and Protection, Beijing, China, 16–20 October 2011; pp. 1225–1229. [Google Scholar] [CrossRef]
- Bandyopadhyay, T.; Han, K.J.; Chung, D.; Chatterjee, R.; Swaminathan, M.; Tummala, R. Rigorous electrical modeling of through silicon vias (TSVs) with MOS capacitance effects. IEEE Compon. Packag. Manuf. Technol. 2011, 1, 893–903. [Google Scholar] [CrossRef]
- Arora, N. MOSFET Models for VLSI Circuit Simulation: Theory and Practice; Springer: New York, NY, USA, 1993. [Google Scholar]
- Ott, H.W. Electromagnetic Compatibility Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Sánchez-Mesa, R.J.; Cortés-Hernández, D.M.; Rayas-Sánchez, J.E.; Brito-Brito, Z.; de la Mora-Hernández, L. EM Parametric Study of Length Matching Elements Exploiting an ANSYS HFSS Matlab-Python Driver. In Proceedings of the 2018 IEEE MTT-S Latin America Microwave Conference (LAMC 2018), Arequipa, Peru, 12–14 December 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Jung, D.H.; Kim, H.; Kim, S.; Kim, J.J.; Bae, B.; Yook, J.-M.; Kim, J.-C.; Kim, J. 30 Gbps High-Speed Characterization and Channel Performance of Coaxial Through Silicon Via. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 814–816. [Google Scholar] [CrossRef]
- Sung, T.; Chiang, K.; Lee, D.; Ma, M. Electrical analyses of TSV-RDL-bump of interposers for high-speed 3D IC integration. In Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 29 May–1 June 2012; pp. 865–870. [Google Scholar] [CrossRef]
Parameter | Symbol/Unit | Value |
---|---|---|
CTSV height | hCTSV/μm | 90 |
Inner Cu cylinder radius of the CTSV | r1/μm | 5 |
Outside diameter of internal insulation of the CTSV | r2/μm | 5.5 |
Outside diameter of internal depletion region of the CTSV | r3/μm | 6.4 |
Outside diameter of Si substrate of the CTSV | r4/μm | 7.6 |
Outside diameter of external depletion region of the CTSV | r5/μm | 8.5 |
Outside diameter of middle insulation of the CTSV | r6/μm | 9 |
Outside diameter of external Cu cylinder of the CTSV | r7/μm | 10 |
Outside diameter of external insulation of the CTSV | r8/μm | 10.5 |
Metal cylindrical radius of the RDL | rRDL/μm | 5 |
Metal cylindrical height of the RDL | hRDL/μm | 3 |
Metal flat length of the RDL | lRDL/μm | 100 |
Metal flat width of the RDL | wRDL/μm | 10 |
Metal flat thickness of the RDL | tRDL/μm | 1 |
Distance between RDL and CTSV | dRDL/μm | 3 |
Area between the RDL metal flat and the CTSV conductor section | SRDL/μm2 | 28.36 |
Metal cylindrical radius of the bump | rbump/μm | 5 |
Metal cylindrical height of the bump | hbump/μm | 3 |
Equivalent distance between the bump metal cylinder and adjacent conductor | dbump/μm | 1.8 |
Equivalent area between the bump metal cylinder and adjacent conductor | Sbump/μm2 | 15.7 |
Relative permittivity of oxide | εox/1 | 4 |
Relative permittivity of Si | εSi/1 | 11.9 |
Relative permittivity of depletion region | εox/1 | 11.9 |
Conductivity of Si | σSi/(S/m) | 7.1 |
Conductivity of Cu | σCu/(S/m) | 5.8 × 107 |
Resistivity of Cu | ρ/(Ω·m) | 1.8 × 10−8 |
Relative permeability of Cu | μ/1 | 9.999 × 10−1 |
Relative permittivity of BCD | εBCD/1 | 2.6 |
Operating angle frequency | ω/(rad/s) | 200π |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhi, C.; Dong, G. Modeling and Analysis of Wide Frequency Band Coaxial TSV Transmission Interconnect. Micromachines 2024, 15, 1127. https://doi.org/10.3390/mi15091127
Zhang Y, Zhi C, Dong G. Modeling and Analysis of Wide Frequency Band Coaxial TSV Transmission Interconnect. Micromachines. 2024; 15(9):1127. https://doi.org/10.3390/mi15091127
Chicago/Turabian StyleZhang, Yujie, Changle Zhi, and Gang Dong. 2024. "Modeling and Analysis of Wide Frequency Band Coaxial TSV Transmission Interconnect" Micromachines 15, no. 9: 1127. https://doi.org/10.3390/mi15091127