PLC-Based Polymer/Silica Hybrid Inverted Ridge LP11 Mode Rotator
Abstract
1. Introduction
2. Principle and Design
3. Optimization Results and Character
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winzer, P.J.; Neilson, D.T. Fiber-optic transmission and networking: The previous 20 and the next 20 years. Opt. Express 2018, 26, 24190–24239. [Google Scholar] [CrossRef] [PubMed]
- Essiambre, R.J.; Kramer, G. Capacity Limits of Optical Fiber Networks. J. Light. Technol. 2010, 28, 662–701. [Google Scholar] [CrossRef]
- Cristiani, I.; Lacava, C. Roadmap on multimode photonics. J. Optics 2022, 24, 105792. [Google Scholar] [CrossRef]
- Meng, X.Y.; Zhang, G.J. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 2023, 14, 3000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, Y.X. On-Chip E00-E20 Mode Converter Based on Multi-Mode Interferometer. Micromachines 2023, 14, 1073. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.X.; Li, C.L. 10-Channel Mode (de)multiplexer with Dual Polarizations. Laser Photonics Rev. 2018, 12, 1700109. [Google Scholar] [CrossRef]
- Saitoh, K.; Hanzawa, N. PLC-based mode multi/demultiplexers for mode division multiplexing. Opt. Fiber Technol. 2017, 35, 80–92. [Google Scholar] [CrossRef]
- Shirata, M.; Fujisawa, T. Design of small mode-dependent-loss scrambling-type mode (de) multiplexer based on PLC. Opt. Express 2020, 28, 9653–9665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.R.; Chen, K.X. Electro-optic reconfigurable two-mode (de)multiplexer on thin-film lithium niobate. Opt. Lett. 2021, 46, 1001–1004. [Google Scholar] [CrossRef]
- Ding, Y.Z.; Yin, Y.X. Mode-selective switch on silica-based PLC platform. Opt Commun. 2023, 546, 129757. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Han, X. High-Speed Optical Mode Switch in Lithium Niobate on Insulator. ACS Photonics 2023, 10, 2257–2263. [Google Scholar] [CrossRef]
- Ding, M.F.; Zhang, M. High-efficiency four-wave mixing in low-loss silicon photonic spiral waveguides beyond the singlemode regime. Opt. Express 2022, 30, 16362–16373. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.A.; Zhang, L. Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photonics Res. 2022, 10, 1–7. [Google Scholar] [CrossRef]
- Priti, R.B.; Liboiron-Ladouceur, O. A Reconfigurable Multimode Demultiplexer/Switch for Mode-Multiplexed Silicon Photonics Interconnects. IEEE J. Sel. Top. Quant. 2018, 24, 8300810. [Google Scholar] [CrossRef]
- Zhao, W.K.; Peng, Y.Y. 96-Channel on-chip reconfigurable optical add-drop multiplexer for multidimensional multiplexing systems. Nanophotonics 2022, 11, 4299–4313. [Google Scholar] [CrossRef]
- Yuan, M.R.; Li, Y.Y. Reconfigurable Optical Directed Logic Circuits Based on Mode Division Multiplexing Technology. IEEE Photonics J. 2023, 15, 1–7. [Google Scholar] [CrossRef]
- Wang, X.B.; Chiang, K.S. Polarization-insensitive mode-independent thermo-optic switch based on symmetric waveguide directional coupler. Opt. Express 2019, 27, 35385–35393. [Google Scholar] [CrossRef]
- Saitoh, K.; Takui, U. PLC-based LP11 mode rotator for mode-division multiplexing transmission. Opt. Express 2014, 22, 19117–19130. [Google Scholar] [CrossRef]
- Yamashita, Y.; Makino, S. PLC-Based LP11 Mode Rotator with Curved Trench Structure Devised from Wavefront Matching Method. IEEE Photonics Technol. Lett. 2017, 29, 1063–1066. [Google Scholar] [CrossRef]
- Memon, A.K.; Song, Q.Q. Planar light-wave circuit-based switchable LP11a-LP11b mode rotator. Appl. Optics 2021, 60, 7653–7657. [Google Scholar] [CrossRef]
- Sato, T.; Fujisawa, T. Design of silica-PLC LP11 mode rotator based on adiabatic mode conversion. J. Optics Express 2023, 31, 23910–23922. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Wada, M. Broadband design of silica-PLC mode-dependent-loss equalizer for 2LP-mode transmission systems. J. Optics Express 2023, 31, 39965–39980. [Google Scholar] [CrossRef] [PubMed]
- Hanzawa, N.; Saitoh, K. PLC-Based Four-Mode Multi/Demultiplexer with LP Mode Rotator on One Chip. J. Light. Technol. 2015, 33, 1161–1165. [Google Scholar] [CrossRef]
- Fujisawa, T.; Yamashita, Y. Scrambling-Type Three-Mode PLC Multiplexer Based on Cascaded Y-Branch Waveguide with Integrated Mode Rotator. J. Light. Technol. 2018, 36, 1985–1992. [Google Scholar] [CrossRef]
- Dong, J.L.; Chiang, K.S. Compact Three-Dimensional Polymer Waveguide Mode Multiplexer. J. Light. Technol. 2015, 33, 4580–4588. [Google Scholar] [CrossRef]
- Huang, Q.D.; Wu, Y.F. Mode Multiplexer with Cascaded Vertical Asymmetric Waveguide Directional Couplers. J. Light. Technol. 2018, 36, 2903–2911. [Google Scholar] [CrossRef]
- Huang, Q.D.; Chiang, K.S. High-Order-Mode-Pass Mode (De)Multiplexer with a Hybrid-Core Vertical Directional Coupler. J. Light. Technol. 2019, 37, 3932–3938. [Google Scholar] [CrossRef]
- Zhao, W.K.; Chen, K.X. Horizontal Directional Coupler Formed with Waveguides of Different Heights for Mode-Division Multiplexing. IEEE Photonics J. 2017, 9, 6601509. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Cui, J. A Degenerate-Mode-Selective Coupler for Stable DSP-free MDM Transmission. J. Light. Technol. 2019, 37, 4410–4420. [Google Scholar] [CrossRef]
- Ullah, F.; Deng, N.P. Recent progress in electro-optic polymer for ultra-fast communication. PhotoniX 2021, 2, 13. [Google Scholar] [CrossRef]
- Zhang, Z.; Felipe, D. Hybrid Photonic Integration on a Polymer Platform. Photonics 2015, 2, 1005–1026. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, L. Polymer and Hybrid Optical Devices Manipulated by the Thermo-Optic Effect. Polymers 2023, 15, 3721. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.X.; Li, Y. Low Power Consumption Polymer/Silica Hybrid Thermo-Optic Switch Based on Racetrack Resonator. IEEE Photonics J. 2022, 14, 1–6. [Google Scholar] [CrossRef]
- Yin, Y.; Yao, M.; Ding, Y.; Xu, X.; Li, Y.; Wu, Y.; Zhang, D. Polymer/Silica Hybrid Waveguide Thermo-Optic VOA Covering O-Band. Micromachines 2022, 13, 511. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wang, F. Polymer/silica hybrid integration waveguide Bragg grating based on surface plasmon polaritons. Appl. Optics 2018, 57, 3607–3611. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wang, F. Polymer/silica hybrid integration add-drop filter based on grating-assisted contradirectional coupler. Opt. Lett. 2018, 43, 2348–2351. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.H.; Fu, Y. Polymer/silica hybrid waveguide amplifier at 532 nm based on NaYF4: Er3+, Yb3+ nanocrystals. Opt. Lett. 2021, 46, 5385–5388. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhang, J.S. The O-band 20-channel 800 GHz Arrayed Waveguide Grating based on silica platform for 1 Tb/s or higher-speed communication system. Opt. Laser Technol. 2022, 156, 108475. [Google Scholar] [CrossRef]
W | H | s | d | w | L |
---|---|---|---|---|---|
6 μm | 6 μm | 0.955 μm | 0.576 μm | 0.83 μm | 973 μm |
Structure | Wavelength Range (nm) | Materials | MCE (%) | Structure | Volumetric (μm3) | Electric Power (mW) |
---|---|---|---|---|---|---|
[18] | 1450~1560 | silica Δ = 0.45% | >90% | straight trench | 11.3 × 11 × 1460 | N.A. |
[19] | 1550 | silica Δ = 1% | 98.7% | curved trench | 10 × 10.1 × 1000 | N.A. |
[20] | 1530~1610 | polymer | >84% | heater | 8 × 8 × 650 | 161.5 |
[21] | 1500~1600 | silica Δ = 1% | 99.4% | tapered trenches | 10 × 8.6 × 2000 | N.A. |
This work | 1530~1565 | Polymer Δ = 8.5% | >98.5% | straight trench | 6 × 6 × 973 | N.A. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Zhang, D.; Lv, X.; Zeng, G.; Cheng, P.; Yin, Y.; Sun, X.; Wang, F. PLC-Based Polymer/Silica Hybrid Inverted Ridge LP11 Mode Rotator. Micromachines 2024, 15, 792. https://doi.org/10.3390/mi15060792
Liang J, Zhang D, Lv X, Zeng G, Cheng P, Yin Y, Sun X, Wang F. PLC-Based Polymer/Silica Hybrid Inverted Ridge LP11 Mode Rotator. Micromachines. 2024; 15(6):792. https://doi.org/10.3390/mi15060792
Chicago/Turabian StyleLiang, Jiaqi, Daming Zhang, Xinyu Lv, Guoyan Zeng, Pai Cheng, Yuexin Yin, Xiaoqiang Sun, and Fei Wang. 2024. "PLC-Based Polymer/Silica Hybrid Inverted Ridge LP11 Mode Rotator" Micromachines 15, no. 6: 792. https://doi.org/10.3390/mi15060792
APA StyleLiang, J., Zhang, D., Lv, X., Zeng, G., Cheng, P., Yin, Y., Sun, X., & Wang, F. (2024). PLC-Based Polymer/Silica Hybrid Inverted Ridge LP11 Mode Rotator. Micromachines, 15(6), 792. https://doi.org/10.3390/mi15060792