Enhancing the Uniformity of a Memristor Using a Bilayer Dielectric Structure
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, K.; Ahn, H.; Song, Y.; Lee, W.; Kim, J.; Kim, Y.; Yoo, D.; Lee, T. High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv. Mater. 2019, 31, 1804841. [Google Scholar] [CrossRef]
- Yan, X.; Pei, Y.; Chen, H.; Zhao, J.; Zhou, Z.; Wang, H.; Zhang, L.; Wang, J.; Li, X.; Qin, C. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Adv. Mater. 2019, 31, 1805284. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.; Choi, W.; Heo, S.; Lee, C.; Nikam, R.; Kim, S.; Hwang, H. Excellent pattern recognition accuracy of neural networks using hybrid synapses and complementary training. IEEE Electr. Device Lett. 2021, 42, 609–612. [Google Scholar] [CrossRef]
- Lashkare, S.; Subramoney, S.; Ganguly, U. Nanoscale side-contact enabled three terminal Pr0.7Ca0.3MnO3 resistive random access memory for in-memory computing. IEEE Electr. Device Lett. 2020, 41, 1344–1347. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, C.C.; Cao, Y.Q.; Wu, D.; Wang, P.; Li, A.D. Optimization of oxygen vacancy concentration in HfO2/HfOx bilayer-structured ultrathin memristors by atomic layer deposition and their biological synaptic behavior. J. Mater. Chem. C. 2020, 8, 12478–12484. [Google Scholar] [CrossRef]
- Sebastian, A.; Gallo, M.L.; Aljameh, R.K.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Ouyang, S.; Yang, J.; Tang, M.H.; Wang, W.; Li, G.; Zou, Z.; Liang, Y.; Li, Y.; Xiao, Y.G. Effect of film thickness and temperature on the resistive switching characteristics of the Pt/HfO2/Al2O3/TiN structure. Solid-State Electron. 2020, 173, 107880. [Google Scholar] [CrossRef]
- Liu, S.Z.; Zeng, J.M.; Wu, Z.X.; Hu, H.; Xu, A.; Huang, X.; Chen, W.L.; Chen, Q.L.; Yu, Z.; Zhao, Y.; et al. An ultrasmall organic synapse for neuromorphic computing. Nat. Commun. 2023, 14, 7655. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.J.; Qi, Y.F.; Mitrovic, I.; Zhao, C.Z.; Hall, S.; Yang, L.; Luo, T.; Huang, Y.B.; Zhao, C. Effect of annealing temperature for Ni/AlOx/Pt RRAM devices fabricated with solution-based dielectric. Micromachines 2019, 10, 446. [Google Scholar] [CrossRef]
- Chen, Q.L.; Zhang, Y.; Liu, S.Z.; Han, T.T.; Chen, X.H.; Xu, Y.Q.; Meng, Z.Q.; Zhang, G.L.; Zheng, X.; Zhao, J.J.; et al. Switchable Perovskite Photovoltaic Sensors for Bioinspired Adaptive Machine Vision. Adv. Intell. Syst. 2020, 2, 2000122. [Google Scholar] [CrossRef]
- Zhang, W.G.; Gao, H.; Deng, C.; Lv, T.; Hu, S.; Wu, H.; Xue, S.; Tao, Y.; Deng, L.; Xiong, W. An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction. Nanoscale 2021, 13, 11497–11504. [Google Scholar] [CrossRef]
- Xiao, Y.Y.; Jiang, B.; Zhang, Z.H.; Ke, S.W.; Jin, Y.Y.; Wen, X.; Ye, C. A review of memristor: Material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Q.; Wang, W.; Zhang, C.; Kan, H.; Yue, W.J.; Pang, J.B.; Gao, S.; Li, Y. A digital–analog integrated memristor based on a ZnO NPs/CuO NWs heterostructure for neuromorphic computing. ACS Appl Electron Mater. 2022, 4, 3525–3534. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, C.C.; Chang, Y.F. Post-moore memory technology: Sneak path current (SPC) phenomena on RRAM crossbar array and solutions. Micromachines 2021, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.Y.; Feng, C.C.; Zhou, H.Y.; Dong, D.; Pan, X.S.; Wang, X.W.; Zhang, L.; Cheng, S.Q.; Pang, W.; Liu, J. Simulation of a fully digital computing-in-memory for non-volatile memory for artificial intelligence edge applications. Micromachines 2023, 14, 1175. [Google Scholar] [CrossRef] [PubMed]
- Geng, D.; Wang, K.; Li, L.; Myny, K.; Nathan, A.; Jang, J.; Kuo, Y.; Liu, M. Thin-film transistors for large-area electronics. Nat. Electron. 2023, 6, 963–972. [Google Scholar] [CrossRef]
- Sun, Y.M.; Song, C.; Yin, J.; Qiao, L.L.; Wang, R.; Wang, Z.Y.; Chen, X.Z.; Yin, S.Q.M.; Saleem, S.; Wu, H.Q.; et al. Modulating metallic conductive filaments via bilayer oxides in resistive switching memory. Appl. Phys. Lett. 2019, 114, 193502. [Google Scholar] [CrossRef]
- Lian, X.; Wang, M.; Rao, M.; Yan, P.; Yang, J.; Miao, F. Characteristics and transport mechanisms of triple switching regimes of TaOx memristor. Appl. Phys. Lett. 2017, 110, 173504. [Google Scholar] [CrossRef]
- Wu, Q.T.; Banerjee, W.; Cao, J.C.; Ji, Z.Y.; Li, L.; Liu, M. Improvement of durability and switching speed by incorporating nanocrystals in the HfOx based resistive random access memory devices. Appl. Phys. Lett. 2018, 110, 023105. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Z.; Qian, X.; Zhu, L.; Cui, D.; Li, A.; Wu, D. Atomic layer deposited oxide-based nanocomposite structures with embedded CoPtx nanocrystals for resistive random access memory applications. ACS Appl. Mater. Inter. 2017, 9, 6634–6643. [Google Scholar] [CrossRef]
- Zhu, W.; Li, J.; Xu, X.; Zhang, L.; Zhao, Y. Low power and ultrafast multi-state switching in nc-Al induced Al2O3/AlxOy bilayer thin film RRAM device. IEEE Access 2020, 8, 16310–16315. [Google Scholar] [CrossRef]
- Sun, C.; Lu, S.M.; Jin, F.; Mo, W.Q.; Song, J.L.; Dong, K.F. Multi-factors induced evolution of resistive switching properties for TiN/Gd2O3/Au RRAM devices. J. Alloy. Compd. 2020, 5, 152564. [Google Scholar] [CrossRef]
- Lin, C.; Chen, J.; Chen, P.H.; Chang, T.C.; Wu, Y.; Eshraghian, J.K.; Li, Y.; Miao, X.S.; Lu, W.D.; Sze, S.M. Adaptive Synaptic Memory via Lithium Ion Modulation in RRAM Devices. Small 2021, 31, 2003964. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Feng, Z.; Luo, M.T.; Wang, J.J.; Wang, Z.; Gong, Y. High-performance perovskite memristor by integrating a tip-shape contact. J Mater. Chem. C. 2021, 9, 15435–15444. [Google Scholar] [CrossRef]
- Chen, Q.L.; Liu, G.; Xue, W.; Shang, J.; Gao, S.; Yi, X.; Lu, Y.; Chen, X.H.; Tang, M.H.; Zheng, X.J.; et al. Controlled Construction of Atomic Point Contact with 16 Quantized Conductance States in Oxide Resistive Switching Memory. ACS Appl. Electron. Mater. 2014, 1, 789–798. [Google Scholar] [CrossRef]
- Niu, Y.; Yu, X.; Dong, X.; Zheng, D.; Liu, S.; Gan, Z.K. Improved Al2O3 RRAM performance based on SiO2/MoS2 quantum dots hybrid structure. Appl. Phys. Lett. 2022, 120, 022106. [Google Scholar] [CrossRef]
- Patil, A.R.; Dongale, T.D.; Kamat, R.K.; Rajpure, K.Y. Binary metal oxide-based resistive switching memory devices: A status review. Mater. Today Commun. 2023, 34, 105356. [Google Scholar] [CrossRef]
- Kuganathan, N.; Baiutti, F.; Tarancón, A.; Fleig, J.; Chroneos, A. Defect energetics in the SrTiO3-LaCrO3 system. Solid State Ion. 2021, 361, 115570. [Google Scholar] [CrossRef]
- Lee, D.; Woo, J.; Cha, E.; Park, S.; Lee, S.; Park, J.; Hwang, H. Defect engineering using bilayer structure in filament-type RRAM. IEEE Electr. Device Lett. 2013, 34, 1250–1252. [Google Scholar] [CrossRef]
- Zhang, R.L.; Huang, H.; Xia, Q.; Ye, C.; Zhang, L.; Zhu, L.Q. Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electron. Mater. 2019, 120, 1800833. [Google Scholar] [CrossRef]
- Wu, H.Q.; Wu, M.H.; Li, X.Y.; Bai, Y.; Deng, N.; Yu, Z.P.; Qian, H. Asymmetric resistive switching processes in W: AlOx/WOy bilayer devices. Chinese Phys. B 2015, 24, 058501. [Google Scholar] [CrossRef]
- Jacob, K.; Shekhar, C.; Waseda, Y. An update on the thermodynamics of Ta2O5. J. Chem. Thermodyn. 2009, 41, 748–753. [Google Scholar] [CrossRef]
- Ismail, M.; Chand, U.; Mahata, C.; Nebhen, J.; Kim, S. Demonstration of synaptic and resistive switching characteristics in W/TiO2/HfO2/TaN memristor crossbar array for bioinspired neuromorphic computing. J. Mater. Sci. Technol. 2022, 96, 94–102. [Google Scholar] [CrossRef]
- Wu, W.; Wu, H.; Gao, B.; Yao, P.; Zhang, X.; Peng, X.; Yu, S.; Qian, H. A methodology to improve linearity of analog RRAM for neuromorphic computing. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018. [Google Scholar]
- Liu, S.; He, Z.; Zhang, B.; Zhong, X.; Guo, B.; Chen, W.; Duan, H.; Tong, Y.; He, H.; Chen, Y.; et al. Approaching the zero-power operating limit in a self-coordinated organic protonic synapse. Adv. Sci. 2023, 10, 2305075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, W.L.; Zeng, J.M.; Fan, F.; Gu, J.W.; Chen, X.H.; Yan, L.; Xie, G.J.; Liu, S.Z.; Yan, Q.; et al. 90% yield production of polymer nano-memristor for in-memory computing. Nat. Commun. 2021, 12, 1984. [Google Scholar] [CrossRef]
- Yoon, J.H.; Yoo, S.; Song, S.J.; Yoon, K.J.; Kwon, D.E.; Kwon, Y.J.; Park, T.H.; Kim, H.J.; Shao, X.L.; Kim, Y.; et al. Uniform self-rectifying resistive switching behavior via preformed conducting paths in a vertical-type Ta2O5/HfO2-x structure with a Sub-μm2 cell area. ACS Appl. Mater. Interfaces 2016, 8, 18215–18221. [Google Scholar] [CrossRef]
- Ma, H.L.; Feng, J.; Lv, H.B.; Gao, T.; Xu, X.X.; Luo, Q.; Gong, T.C.; Yuan, P. Self-rectifying resistive switching memory with ultralow switching current in Pt/Ta2O5/HfO2-x/Hf stack. Nanoscale Res. Lett. 2017, 12, 118. [Google Scholar] [CrossRef]
- Kuzmichev, D.S.; Chernikova, A.G.; Kozodaev, M.G.; Markeev, A.M. Resistance switching peculiarities in nonfilamentary self-rectified TiN/Ta2O5/Ta and TiN/HfO2/Ta2O5/Ta stacks. Phys. Status Solidi A 2020, 217, 1900952. [Google Scholar] [CrossRef]
- Huang, X.Y.; Wu, H.Q.; Sekar, D.; Nguyen, S.; Wang, K.; Qian, H. Optimization of TiN/TaOx/HfO2/TiN RRAM arrays for improved switching and data retention. In Proceedings of the 2015 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 17–20 May 2015. [Google Scholar]
Device Structure | VSet (V) | VReset (V) | δ (VSet) | δ (VReset) | On/Off | Multiple Conductivity States | Ref. |
---|---|---|---|---|---|---|---|
Pt/Ta2O5/HfO2-x/TiN | 15 | −10 | NA | NA | 104 | NA | [37] |
Pt/Ta2O5/HfO2-x/Hf | 5.5 | −3.5 | NA | NA | 103 | NA | [38] |
TiN/HfO2/Ta2O5/Ta | −3 | 3 | NA | NA | 102 | NA | [39] |
TiN/TaOx/HfO2/TiN | 1.75 | −0.6 | NA | NA | 13.4 | NA | [40] |
Au/Ta2O5/HfO2/Ta/Pt | 0.5 | 0.48 | 8.22% | 2.44% | 58.7 | 32 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, Q.; Guo, Y.; Guo, B.; Liu, G.; Liu, Y.; He, L.; Li, Y.; He, J.; Tang, M. Enhancing the Uniformity of a Memristor Using a Bilayer Dielectric Structure. Micromachines 2024, 15, 605. https://doi.org/10.3390/mi15050605
Liu Y, Chen Q, Guo Y, Guo B, Liu G, Liu Y, He L, Li Y, He J, Tang M. Enhancing the Uniformity of a Memristor Using a Bilayer Dielectric Structure. Micromachines. 2024; 15(5):605. https://doi.org/10.3390/mi15050605
Chicago/Turabian StyleLiu, Yulin, Qilai Chen, Yanbo Guo, Bingjie Guo, Gang Liu, Yanchao Liu, Lei He, Yutong Li, Jingyan He, and Minghua Tang. 2024. "Enhancing the Uniformity of a Memristor Using a Bilayer Dielectric Structure" Micromachines 15, no. 5: 605. https://doi.org/10.3390/mi15050605
APA StyleLiu, Y., Chen, Q., Guo, Y., Guo, B., Liu, G., Liu, Y., He, L., Li, Y., He, J., & Tang, M. (2024). Enhancing the Uniformity of a Memristor Using a Bilayer Dielectric Structure. Micromachines, 15(5), 605. https://doi.org/10.3390/mi15050605