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Abstract: Resistive random access memory (RRAM) holds great promise for in-memory computing,
which is considered the most promising strategy for solving the von Neumann bottleneck. However,
there are still significant problems in its application due to the non-uniform performance of RRAM
devices. In this work, a bilayer dielectric layer memristor was designed based on the difference in the
Gibbs free energy of the oxide. We fabricated Au/Ta2O5/HfO2/Ta/Pt (S3) devices with excellent
uniformity. Compared with Au/HfO2/Pt (S1) and Au/Ta2O5/Pt (S2) devices, the S3 device has
a low reset voltage fluctuation of 2.44%, and the resistive coefficients of variation are 13.12% and
3.84% in HRS and LRS, respectively, over 200 cycles. Otherwise, the bilayer device has better linearity
and more conductance states in multi-state regulation. At the same time, we analyze the physical
mechanism of the bilayer device and provide a physical model of ion migration. This work provides
a new idea for designing and fabricating resistive devices with stable performance.

Keywords: resistive random access memory (RRAM); crossbar array; bilayer dielectric structure;
Gibbs free energy

1. Introduction

As the limits of Moore’s Law are approached, computers using the Von Neumann
architecture are limited by a storage wall and a power wall, and there is an urgent need
to develop new memory-device solutions to meet the requirements of modern society
for big data, artificial intelligence, and emerging industries [1,2]. Compared with the
current mainstream charge-based flash memory, resistive switching random access memory
(RRAM) has been considered one of the most promising prospects for next-generation
non-volatile memory (NVM) devices owing to its simple structure, high integration density,
high-speed operation, low power consumption, and good compatibility with conventional
CMOS processes [3–5]. The structure of RRAM devices is similar to the traditional sandwich
structure, consisting of a top electrode, a dielectric layer, and a bottom electrode. Pt, Au,
Ti, Cu, Ag, or TiN are usually used as electrode materials [6,7]. Organics [8], transition
metal oxides [7,9], perovskites [10], and two-dimensional materials [11] can be used as
dielectric layers. Among the different materials, binary transition metal oxides are used for
resistive device preparative studies owing to their simple chemical compositions [12,13],
polymorphic switching properties, and compatibility with complementary metal oxide
semiconductor (CMOS) fabrication processes [8].

Memory resistors can be used for storage and synapse mimicry [14,15]. Traditional
methods of simulating neurons require dozens of conventional electronics, transistors,

Micromachines 2024, 15, 605. https://doi.org/10.3390/mi15050605 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi15050605
https://doi.org/10.3390/mi15050605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://doi.org/10.3390/mi15050605
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi15050605?type=check_update&version=1


Micromachines 2024, 15, 605 2 of 11

capacitors, etc. [16] This results in a huge challenge for power consumption and integration
of the chip. The conductance state of the memristor is continuously adjustable under
an applied electric field, but the uniformity of the memristor and the linearity of the
polymorphic regulation are important performance metrics for its applicability, which has
become a key parameter to be optimized [5,8,16].

Due to the existence of only a metal-semiconductor interface in the single-layer device,
the concentration of oxygen ions and oxygen vacancies cannot be regulated, which increases
the formation and breakage of conducting channels randomly and makes the device
performance unstable [17,18]. Scientists have proposed many ways to improve stability,
such as introducing nanocrystals in the functional layer [19–21], impurity doping [22,23],
and integrating a layer of pinpoint electrodes [24–26]. However, these solutions require
the addition of additional microstructure processing, sacrificing the scalability of micro-
miniaturization and increasing production costs.

The common types of thin film growth are chemical vapor deposition, reactive sput-
tering, atomic layer deposition, magnetron sputtering, and sol-gel. Among these, chemical
vapor deposition lacks stability in the process of growing thin films. Reactive sputtering
needs to maintain a high-temperature atmosphere during growth, which makes the method
incompatible with CMOS processes. Atomic layer deposition is suitable for growing uni-
form films on substrates with gradients, but it is costly. The sol-gel method is less costly,
but its homogeneity is poor. In contrast, magnetron sputtering can grow homogeneous
films in a lower-temperature atmosphere, which is favorable for film growth [27]; therefore,
in this study, the magnetron sputtering technique was used to prepare dielectric films.

Therefore, we need to investigate simple and efficient methods to regulate the forma-
tion and breakage of conducting channels to improve the stability of the devices. Different
Gibbs free energies lead to the varying simplicity of binding of oxygen ions to oxygen
vacancies [28]. Therefore, we designed bilayer dielectric devices with different Gibbs free
energies to improve the performance homogeneity of the devices. In this work, we fabri-
cated and investigated Au/HfO2/Pt (S1), Au/Ta2O5/Pt (S2), and Au/Ta2O5/HfO2/Ta/Pt
(S3) devices. Compared with single functional layer devices, S3 devices have enhanced
stability, lower switching voltages, and more linear regulation of multiple states. The film
roughness was characterized using atomic force microscopy. Importantly, we provide a
detailed mechanistic explanation of the S3’s superior performance and ultimately validate
the device’s microscopic performance.

2. Experiments

Pt/Ti/SiO2/Si (Pt) substrate was carefully cleaned with acetone, ethanol, deionized
water, and ethanol in an ultrasonic bath, respectively, each for 10 min. Before deposition, the
chamber pressure was adjusted to 0.7 Pa. The pressure was maintained using a combination
of argon (Ar) and oxygen (O2) gases at a total flow rate of 30 sccm. Firstly, the Ta layer was
deposited on Pt substrate using radio frequency (RF) magnetron sputtering with a Ta metal
target in a pure argon atmosphere (Ar: 30 sccm); the sputtering power was 100 W, and the
deposition time was 120 s at RT. Secondly, the HfO2 layer was deposited by RF magnetron
sputtering with a 99.999% pure HfO2 ceramic target; sputtering was carried out at 300 ◦C
for 3 nm in an argon–oxygen (Ar/O2 = 15/15 sccm) mixed gas atmosphere. Thirdly, the
Ta2O5 layer was deposited using a 99.999% pure Ta2O5 ceramic target in an atmosphere
of 300 ◦C with a flow rate of 15 sccm for both argon and oxygen at a power of 60 W for
9 nm. Then, a ~40 nm thick Au top electrode (TE) was deposited onto the thin film by RF
sputtering at RT via patterning with a circular shadow mask (ϕ = 100 µm). Finally, devices
with three structures of S1, S2, and S3 were prepared.

In this work, cross array devices were prepared using photolithography and a double-
layer photoresist lift-off process. Cross-electrode strips with a width of 2 µm and a pitch
of 10 µm were formed on the Pt substrate. The bottom electrode was patterned by UV
lithography using a lithography system, and the 10 nm Ti adhesion layer and the 20 nm
Au layer were e-beam evaporated using a Denton e-beam evaporator. After lift-off, the
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growth processes for the HfO2 and Ta2O5 dielectric layers were the same as above. Finally,
the top electrode consisting of 5 nm Ta and 40 nm Au was patterned and deposited using
photolithography, e-beam evaporation, and similar lift-off.

All electrical measurements were performed on a Keithley 4200 Semiconductor Pa-
rameter Analyzer (KEITHLEY, Cleveland, OH, USA). AFM height images were obtained
using a Veeco Multimode AFM microscope in tapping mode (Solver P47-PRO, NT-MDT
Co., Moscow, Russia).

3. Results and Discussion

We designed the memory resistor device of this work based on the differences in the
oxide Gibbs free energy transitions. As shown in Figure 1, we use the resistive transfer mech-
anism to determine the reasons for the superior performance of Au/Ta2O5/HfO2/Ta/Pt
devices. The initial state of the device is shown in Figure 1a, where more oxygen vacancies
exist in the hafnium oxide layer near the tantalum side because tantalum is more capable of
absorbing oxygen than the tantalum–oxygen interface [29]. The oxygen vacancy content of
the hafnium oxide layer was characterized as shown in Figure S1, with an oxygen vacancy
content of 42.23%. As shown in Figure 1b, when a negative bias is applied on the top
electrode, oxygen in the dielectric layer will undergo the reaction in Equation (1), produc-
ing oxygen vacancies and oxygen ions, which migrate toward the bottom electrode, and
oxygen vacancies move toward the top electrode under the action of the electric field [30].
The device completes the setup process when oxygen vacancies are connected to the top
and bottom electrodes, as shown in Figure 1c.

O + 2e− = V••
o + O2− (1)
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Figure 1. A schematic qualitative model of switching modes in the Au/Ta2O5/HfO2/Ta/Pt device.
(a) Initial state, (b) set process, (c) LRS, (d) reset process, (e) HRS.

The lower Gibbs free energy means that the oxidation process is more likely to oc-
cur [31]. The magnitude of the Gibbs free energy transitions for oxide formation in Ta2O5
and HfO2 are −1903.2 kJ/mol and −1010.8 kJ/mol, respectively [32,33]. Hence, oxygen
ions are more likely to recombine with oxygen vacancies in the tantalum oxide layer. Fur-
thermore, the migration activation energy of oxygen ions at the interface is lower than
that of the bulk phase [28]. As a consequence, oxygen ions at the interface between HfO2
and Ta2O5 are more likely to migrate under the proper electric field strength. As shown in
Figure 1d and e, when a positive bias voltage is applied to the top electrode of the device,
the oxygen ions at the interface migrate and react with the oxygen vacancies in the tantalum
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oxide layer in a complex reaction, as shown in Equation (2), and a reset process occurs,
resulting in the formation of the HRS [30].

O2− + V••
o = O + 2e− (2)

Therefore, the connection and breaking of the conductive channel of the device occur
at the Ta2O5/HfO2 interface, which results in a more regular change in the conductive
path and thus a more uniform distribution of high and low resistance values and operating
voltages of the device.

Oxygen ion migration at the Ta2O5/HfO2 interface of S3 devices requires only a
smaller voltage to drive compared with single-layer functional layer devices, resulting in a
smaller switching voltage. The lower operating voltage results in less heat build-up during
the reset process [33], which makes the multi-state regulation of S3 devices more linear.

Figure 2a shows that we fabricated a 64 × 64 crossbar array using photolithography
and lift-off processes. More details of the crossbar array are shown under the 5× optical
microscope image in the upper right corner of Figure 2a. The line width of the array is 2 µm
and the spacing is 10 µm, as seen in the 100× optical microscope image in the bottom right
of Figure 2a. The surface morphologies of the functional layers of S1, S2, and S3 devices
were characterized by AFM, as shown in Figure S2, and the surface roughnesses of the
functional layers of S1 and S2 devices were 1.052 nm and 1.175 nm, respectively. as shown
in Figure 2b, the surface roughness of the S3 device film was 1.355 nm, which indicates that
the fabricated films are relatively flat and suitable for the preparation of memristor devices.
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Figure 2. (a) Optical image and scanning electron image of the 64 × 64 crossbar array, (b) AFM image
of S3.

From Figure S3, we can see that the electroforming voltage of the S3 device is higher
than that of the S1 and S2 devices, which is due to the fact that the bilayer device requires
a larger voltage to drive the oxygen vacancies to form a conductive channel during the
electroforming process [7].

We investigated the S1 and S2 devices. As illustrated in Figure 3a, when a voltage
from 0 to −2 V is applied to the S1 device, the SET process occurs at −0.92 V, and the
current changes abruptly from 1.5 to 5 mA. When a reverse voltage of 0 to 2.5 V is applied,
a RESET process occurs at 0.92 V, and the current fades from 4.3 to 1.4 mA. The S1 device is
capable of over 50 DC cycles. The I–V curve of the S2 device is shown in Figure 3b. When a
negative voltage of −2.5 V is applied to the Au electrode, the SET process can be observed
at −1.8 V, where the current changes abruptly from 1.8 to 5 mA. When a positive voltage of
3 V is applied, the device switches to the RESET process, and the current changes gradually
from 8 mA to 4 mA. The curves were repeated over 70 times. As shown in Figure 3c, by
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applying a sweep voltage from 0 to −1.0 V to the S3 device, the SET process occurs at
−0.54 V and the current suddenly increases from 0.1 to 3 mA. With a reverse positive sweep
from 0 to 1.4 V, the device can return to the initial OFF state and the current gradually
decreases from 4 to 0.1 mA in one integration cycle. By the same operation method, the
S3 device can run steadily for over 200 cycles. This indicates that the S3 device has higher
stability than S1 and S2 devices during C2C operation, with significantly lower VSet and
VReset for S3 compared with S1 and S2, respectively.
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Figure 3. Typical bipolar resistor switch I–V characteristic curves of S1 (a), S2 (b), and S3 (c). The
insets are the corresponding device structures. (d) The cumulative probability distribution of the
high and low resistance values of the devices. (e) Cumulative probability distribution of switching
voltages. (f) Retention testing of S1, S2, and S3. The relative fluctuations can be expressed by the
equation δ/µ (δ is the standard deviation and µ is the mean).

Figure 3d shows the cumulative distribution of the high and low resistance values
of S1, S2, and S3 at 0.5 V. The switching ratio of the devices is calculated by reading the
average of the high and low resistance values of the S1, S2, and S3 devices at 0.5 V. The
HRS/ LRS ratio of the S3 device is 58.7, and the ratios of the S1 and S2 devices are 7.2
and 55.2, respectively, which indicates that the S3 device has a larger switching ratio. The
results show that the ON/OFF ratio of the S3 device is sufficient for RRAM devices to be
used for storing data [24]. Here, relative fluctuations are defined by δ/µ, where δ is the
standard deviation and µ is the mean value. The relative HRS volatilities of S1, S2, and
S3 devices are 14.59%, 57.46%, and 13.12%, respectively, and the relative LRS volatilities
are 7.85%, 22.00%, and 3.84%, respectively. Both the high and low resistance fluctuation
coefficients of the S3 device are smaller than those of the S1 and S2 devices, indicating
that the S3 device has excellent uniformity. This high degree of homogeneity is due to
the different Gibbs free energies of the bilayer devices, as well as the smaller migration
energy of oxygen ions at the HfO2/Ta2O5 interface [27,29], which limits the disruption and
restoration of the conductive channels to the vicinity of the Ta2O5 interface where the Gibbs
free energies are lower, reduces the randomness of the conductive channel disconnection,
and increases the uniformity of the high- and low-resistance states.
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Figure 3e shows the cumulative distribution of VSet and VReset for S1, S2, and S3. We
can see that the δ/µ values of the Vset of S1, S2, and S3 are 10.76%, 12.57%, and 8.22%,
respectively, and the δ/µ values of the Vreset of S1, S2, and S3 are 12.87%, 11.51%, and
2.44%, respectively. The S3 device has significantly decreased δ/µ compared with the
operating voltages corresponding to S1 and S2. Comparative results show that the S3
device is more stable and requires a smaller driving voltage to connect and disrupt the
conductive channels of the device, as the oxygen ion mobility energy at the interface is
lower than that of the bulk phase. The lower operating voltage assists in reducing power
consumption [28].

Figure 3f shows the retention performance of the devices. The S1 and S2 devices have
good retention performance in both the high- and low-resistance states with very little
fluctuation. In comparison, the S3 device has better stability with almost no fluctuation in
HRS and LRS over 104 s. As shown in Figure S4, we performed programming endurance
tests on S1, S2, and S3 devices. During the voltage pulse fatigue tests, the resistance of
S1 and S2 devices changed significantly within 105 pulses, whereas the high and low
resistances of S3 devices did not fluctuate significantly within 106 pulses, which indicates
that the fatigue resistance of S3 devices is better than that of single-layer devices. These
observations suggest that the S3 device has superior storage characteristics. Figure 4 shows
the temperature change curve of the S3 device in the low-resistance state, and the on-current
increases with temperature, which is consistent with the trend of the oxygen vacancy
conductive mechanism. This proves that the conductive channel of the device consists of
oxygen vacancies, which is consistent with our proposed conductive mechanism [7].
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Temperature has a large impact on the performance of the device; therefore, in this
work, the I–V performance of the S3 device was tested in an 85 ◦C environment, and the
results are shown in Figure 5, where the δ/µ values of VSet, VReset, HRS, and LRS are
statistically calculated to be 11.55%, 6.72%, 22.35%, and 8.95%, respectively. Compared
with the performance of the S3 device at room temperature, the volatility of the test
results conducted at 85 ◦C is increased, which is due to the increase in temperature, which
decreases the stability of the oxygen vacancies in the device and leads to an increase in the
fluctuations. However, it is clear from the I–V performance of the devices that the S3 device
is still able to function properly in an 85 ◦C environment.
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Multiple conductance states in memristors have a wide range of applications in areas
such as ultrahigh-density information storage, logic storage circuits, and neural networks,
and the higher the linearity of the conductance states, the more favorable it is to improve
the accuracy of the device in the application [34–36]. The polymorphic regulation was
obtained by utilizing DC voltage scanning during the device reset process, starting from
the voltage at the beginning of the reset and increasing the cut-off voltage in steps of
0.02 V until the end of the reset process. The conductance values obtained from each cut-off
voltage regulation were read, and five points were selected for each of the S1, S2, and S3
devices to be modulated. The results of the statistical multistate regulation are shown in
Figure 6, where we can see that the S1 and S2 devices have 20 conductance states and
18 conductance states, respectively, adjusted under the control of the cut-off voltage, and
the resulting conductance states are slightly less linear. Compared with the S1 and S2
devices, our S3 device can regulate up to 32 conduction states with higher linearity than
the S1 and S2 devices. This is because the resetting process of the stacked structure of the
S3 device occurs at the interface of hafnium oxide and tantalum oxide, which reduces the
randomness of the conductive channel changes and improves the linearity of the multiple
conductive states of the S3 device. Finally, the yield of the S3 device in the array shown
in Figure 2a was tested, as shown in Figures S5 and S6. The yield of the device reached
79/81 × 100% ≈ 97.5%, and the device-to-device uniformity of the S3 device is 92.37%,
which indicates that it has good micro-miniaturization potential.
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As summarized in Table 1, in comparison with other literature on the same device
structure, the present work has a lower switching voltage and 32 adjustable conductance
states, which are important for the optimization of the device performance.

Table 1. Comparison of electrical properties with other literature.

Device Structure VSet
(V)

VReset
(V) δ (VSet) δ (VReset) On/Off Multiple

Conductivity States Ref.

Pt/Ta2O5/HfO2-x/TiN 15 −10 NA NA 104 NA [37]
Pt/Ta2O5/HfO2-x/Hf 5.5 −3.5 NA NA 103 NA [38]
TiN/HfO2/Ta2O5/Ta −3 3 NA NA 102 NA [39]
TiN/TaOx/HfO2/TiN 1.75 −0.6 NA NA 13.4 NA [40]

Au/Ta2O5/HfO2/Ta/Pt 0.5 0.48 8.22% 2.44% 58.7 32 This Work

Note: NA is not available.

Due to the good stability of the S3 device, its conductance was regulated using a pulse
voltage. As shown in Figure 7a, we applied a pulse voltage with an amplitude of 0.6 V
and a pulse width of 3 µs to regulate the conductance of the S3 device by changing the
period of the pulse. After applying 32 pulse voltages, the maximum change in current was
achieved by pulse regulation with a period of 23 µs, and the minimum change in current
was achieved by pulse regulation with a period of 63 µs. The conductance change rate
obtained by pulse regulation is shown in Figure 7b. It can be seen that for the same number
of pulses, the conductance change rate of the pulse voltage regulation with a pulse period of
23 µs is more than 60%, while the conductance change rate of the pulse voltage regulation
with a pulse period of 63 µs is only 10%. A good frequency-dependent property is shown,
and this property can be used for frequency-dependent synaptic learning behavior [8,40].
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4. Conclusions

In conclusion, we prepared double oxide layers with different Gibbs free energies as
functional layers and compared them with single functional layer devices. The Au/Ta2O5/
HfO2/Ta/Pt devices have a larger switching ratio of 58.7, VSet and VReset as low as −0.55 V
and 0.46 V, respectively, and operating voltages that are smaller than those of S1 and S2 de-
vices. Analysis of the statistical distributions of the switching voltage and resistance values
shows that the δ/µ values of the VSet, VReset, HRS, and LRS are only 8.22%, 2.44%, 13.12%,
and 3.84%, respectively, which are smaller than the corresponding relative fluctuations of
the single-layer devices. This indicates that the uniformity of the device is improved. The
interface effect of the functional layer in the S3 device makes its multi-state modulation
more linear. We present a detailed physical mechanism of resistive switching to explain the
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device’s performance enhancement. High yields were obtained in the verification of the
device’s microscale performance. The Au/Ta2O5/HfO2/Ta/Pt RRAM devices proposed in
this study show great potential for nonvolatile memory applications, in-store computing,
and micro-shrinkage integration and provide a new idea for the design and fabrication of
resistor devices with stable performance.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/mi15050605/s1. Figure S1: XPS testing of HfO2 thin film.
Figure S2: Surface morphology testing of device films:(a) S1, (b) S2. Figure S3: Electroforming process
of S1, S2, and S3 devices. Figure S4: Programming endurance tests for devices: (a) S1, (b) S2, (c) S3.
Figure S5: Figure 2a DC I-V cycle test of 81 devices in the array. Figure S6: Statistics on the number of
I–V cycles in Figure S5.
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