Miniaturized Lens Antenna with Enhanced Gain and Dual-Focusing for Millimeter-Wave Radar System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Radiation Waveguide
2.2. Design of Dual-Focusing LENSES
2.3. MEMS Processing Method and Preparation Process
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Y.W.; Hao, Z.C.; Miao, Z.W. A planar W-band large-scale high-gain substrate-integrated waveguide slot array. IEEE Trans. Antennas Propag. 2020, 68, 6429–6434. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, J.; Yang, F.; Zhang, L.; Chen, F.; Li, M.; Wu, Z. W-Band Low-Profile Transmit Array Based on Wideband Partially Reflecting Surface. IEEE Trans. Antennas Propag. 2022, 71, 1087–1092. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Kong, L.; Zhang, P.; Lv, Q.; Zhang, B.; Tian, B.; Jin, C. W-band ridge gap waveguide slot array antenna with low sidelobe and high-gain characteristics. Microw. Opt. Technol. Lett. 2022, 64, 565–570. [Google Scholar] [CrossRef]
- Hao, Z.C.; He, M.; Fan, K.; Luo, G. A Planar Broadband Antenna for the E-Band Gigabyte Wireless Communication. IEEE Trans. Antennas Propag. 2017, 65, 1369–1373. [Google Scholar] [CrossRef]
- Bouniol, D.; Protat, A.; Plana-Fattori, A.; Giraud, M.; Vinson, J.P.; Grand, N. Comparison of Airborne and Spaceborne 95-GHz Radar Reflectivities and Evaluation of Multiple Scattering Effects in Spaceborne Measurements. J. Atmos. Ocean. Technol. 2008, 25, 1983–1995. [Google Scholar] [CrossRef]
- Hao, Z.C.; Yuan, Q.; Song, Z. A high efficiency planar W-band array antenna. In Proceedings of the 46th European Microwave Conference, London, UK, 4–6 October 2016. [Google Scholar]
- Lo, J.J.; Chen, Z.N. Design of a broadband millimeter-wave array antenna for 5G applications. IEEE Antennas Wirel. Propag. Lett. 2022, 22, 1030–1034. [Google Scholar] [CrossRef]
- Liu, J.; Lu, H.; Li, Z.; Liu, Z.; Dong, Z.; Deng, C.; Lv, X.; Liu, Y. Wideband circularly polarized waveguide-fed antipodal exponential tapered slot antenna. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1912–1916. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, M.; Ng, W.R.; Gehm, H.; Xin, M. Terahertz Horn Antenna Based on Hollow-Core Electromagnetic Crystal (EMXT) Structure. IEEE Trans. Antennas Propag. 2012, 60, 5557–5563. [Google Scholar] [CrossRef]
- Campo, M.A.; Carluccio, G.; Blanco, D.; Litschke, O.; Bruni, S.; Llombart, N. Wideband circularly polarized antenna with in-lens polarizer for high-speed communications. IEEE Trans. Antennas Propag. 2020, 69, 43–54. [Google Scholar] [CrossRef]
- Pourahmadazar, J.; Denidni, T.A. Author Correction: Towards Millimeter-wavelength: Transmission-Mode Fresnel-Zone Plate Lens Antennas using Plastic Material Porosity Control in Homogeneous Medium. Sci. Rep. 2018, 8, 10293. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Jin, Z.; Zhu, J. Circumferentially conformal slot array antenna and its Ka-band multibeam applications. IET Microw. Antennas Propag. 2018, 12, 2307–2312. [Google Scholar] [CrossRef]
- Konstantinidis, K.; Feresidis, A.P.; Constantinou, C.C.; Hoare, E.; Gashinova, M.; Lancaster, M.J.; Gardner, P. Low-THz Dielectric Lens Antenna with Integrated Waveguide Feed. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 572–581. [Google Scholar] [CrossRef]
- Nsengiyumva, F.; Migliaccio, C.; Lanteri, J. Lens antenna with a beam focused in azimuth and a sectorial beam in elevation in W band. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1445–1446. [Google Scholar] [CrossRef]
- Larimore, Z.; Jensen, S.; Good, A. Additive manufacturing of Luneburg lens antennas using space-filling curves and fused filament fabrication. IEEE Trans. Antennas Propag. 2018, 66, 2818–2827. [Google Scholar] [CrossRef]
- Tajima, T.; Song, H.-J.; Ajito, K.; Yaita, M.; Kukutsu, N. 300-GHz Step-Profiled Corrugated Horn Antennas Integrated in LTCC. IEEE Trans. Antennas Propag. 2014, 62, 5437–5444. [Google Scholar] [CrossRef]
- Lee, W.; Plouchart, J.O.; Ozdag, C.; Aydogan, Y.; Yeck, M.; Cabuk, A.; Kepkep, A.; Reynolds, S.K.; Apaydin, E.; Valdes-Garcia, A. Fully Integrated 94-GHz Dual-Polarized TX and RX Phased Array Chipset in SiGe BiCMOS Operating up to 105 °C. IEEE J. Solid-State Circuits 2018, 53, 2512–2531. [Google Scholar] [CrossRef]
- Gomez-Correa, J.E.; Coello, V.; Garza-Rivera, A.; Puente, N.P.; Chavez-Cerda, S. Three-dimensional ray tracing in spherical and elliptical generalized Luneburg lenses for application in the human eye lens. Appl. Opt. 2016, 55, 2002–2010. [Google Scholar] [CrossRef]
- Hua, C.; Wu, X.; Yang, N.; Wu, W. Air-Filled Parallel-Plate Cylindrical Modified Luneberg Lens Antenna for Multiple-Beam Scanning at Millimeter-Wave Frequencies. IEEE Trans. Microw. Theory Tech. 2013, 61, 436–443. [Google Scholar] [CrossRef]
- Sipus, Z.; Bojanjac, D.; Komljenovic, T. Electromagnetic Modeling of Spherically Stratified Lenses Illuminated by Arbitrary Sources. IEEE Trans. Antennas Propag. 2015, 63, 1837–1843. [Google Scholar] [CrossRef]
- Lei, W.; Weijun, F.; Jianling, Z. Analysis of Impact of Radome on Airborne Pulse Doppler Radar Performance. Fire Control. Radar Technol. 2015, 44, 88–93+102. [Google Scholar]
- Campo, A.d.; Greiner, C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, R81–R95. [Google Scholar] [CrossRef]
- Zhou, Z.F.; Huang, Q.A. Comprehensive Simulations for Ultraviolet Lithography Process of Thick SU-8 Photoresist. Micromachines 2018, 9, 341. [Google Scholar] [CrossRef]
- Yang, H.; Dhayalan, Y.; Shang, X.; Lancaster, M.J.; Liu, B.; Wang, H.; Henry, M.; Huggard, P.G. WR-3 Waveguide Bandpass Filters Fabricated Using High Precision CNC Machining and SU-8 Photoresist Technology. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 100–107. [Google Scholar] [CrossRef]
- Duan, J.; Shen, X.; Xiao, H.; Zhang, B.; Bai, Q. Micromachined W-band dual-band quasi-elliptic waveguide filter. Microelectron. J. 2021, 115, 105200. [Google Scholar] [CrossRef]
- Xiao, H.; Duan, J.; Zhang, B.; Zhang, A.; Huang, C.; Jia, Q. Design and characterization of millimeter-wave micromachined polymer-based cavity filter with resonant cylinders. Sens. Actuators A Phys. 2018, 284, 242–250. [Google Scholar] [CrossRef]
- Meng, H.; Chen, Y.; Dou, W. Design and Fabrication of W-Band Waveguide Slotted Array Antenna Based on Milling Process. Int. J. Antennas Propag. 2020, 2020, 1642174. [Google Scholar] [CrossRef]
- Vosoogh, A.; Haddadi, A.; Zaman, A.U.; Yang, J.; Zirath, H.; Kishk, A.A. W-Band Low-Profile Monopulse Slot Array Antenna Based on Gap Waveguide Corporate-Feed Network. IEEE Trans. Antennas Propag. 2018, 66, 6997–7009. [Google Scholar] [CrossRef]
- Kim, D.; Lim, Y.; Yoon, H.S.; Nam, S. High-Efficiency W-Band Electroforming Slot Array Antenna. IEEE Trans. Antennas Propag. 2015, 63, 1854–1857. [Google Scholar] [CrossRef]
Ref. | Antenna Type | Frequency (GHz) | Size (mm3) | Max Gain (dBi) | Preparation Technology |
---|---|---|---|---|---|
[27] | Waveguide slotted array antenna | 91.5–94.5 | 36 × 32 × 8 | 25.9 | Milling process |
[3] | SIC slotted antenna | 81.2–86 | 20.8 × 20.8 × 1.1 | 25.3 | PCB process |
[28] | Waveguide slotted array antenna | 85–105 | 20 × 27 × 7 | 26.8 | Electroforming process |
[29] | Gap waveguide array antenna | 89.9–97.6 | 55 × 55 × 9 | 30 | Milling process |
This work | Waveguide Lens antenna | 97.5–104 | 16 × 16 × 9 | 22 | UV-LIGA technology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Duan, J.; Shen, X.; Wang, Y.; Zhang, B. Miniaturized Lens Antenna with Enhanced Gain and Dual-Focusing for Millimeter-Wave Radar System. Micromachines 2024, 15, 335. https://doi.org/10.3390/mi15030335
Wang J, Duan J, Shen X, Wang Y, Zhang B. Miniaturized Lens Antenna with Enhanced Gain and Dual-Focusing for Millimeter-Wave Radar System. Micromachines. 2024; 15(3):335. https://doi.org/10.3390/mi15030335
Chicago/Turabian StyleWang, Jian, Junping Duan, Xinxin Shen, Yongsheng Wang, and Binzhen Zhang. 2024. "Miniaturized Lens Antenna with Enhanced Gain and Dual-Focusing for Millimeter-Wave Radar System" Micromachines 15, no. 3: 335. https://doi.org/10.3390/mi15030335
APA StyleWang, J., Duan, J., Shen, X., Wang, Y., & Zhang, B. (2024). Miniaturized Lens Antenna with Enhanced Gain and Dual-Focusing for Millimeter-Wave Radar System. Micromachines, 15(3), 335. https://doi.org/10.3390/mi15030335