Advances in 2D Molybdenum Disulfide Transistors for Flexible and Wearable Electronics
Abstract
1. Introduction
2. Discussion
2.1. Transistors
2.2. Sensors
2.3. Displays
2.4. Memory Devices
2.5. Logic Circuits
2.6. Neuromorphic Devices
3. Conclusions
4. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Frindt, R.; Yoffe, A. Physical properties of layer structures: Optical properties and photoconductivity of thin crystals of molybdenum disulphide. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1963, 273, 69–83. [Google Scholar]
- Joensen, P.; Frindt, R.; Morrison, S.R. Single-layer mos2. Mater. Res. Bull. 1986, 21, 457–461. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Wilson, J.A.; Yoffe, A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, S.; Pal, A.N.; Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 2011, 5, 7707–7712. [Google Scholar] [CrossRef]
- Lee, C.; Yan, H.; Brus, L.E.; Heinz, T.F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 2010, 4, 2695–2700. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Pulkin, A.; Yazyev, O.V. Spin-and valley-polarized transport across line defects in monolayer MoS2. Phys. Rev. B 2016, 93, 041419. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802. [Google Scholar] [CrossRef]
- Das, S.; Chen, H.-Y.; Penumatcha, A.V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Neal, A.T.; Ye, P.D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569. [Google Scholar] [CrossRef]
- Wang, H.; Yu, L.; Lee, Y.-H.; Shi, Y.; Hsu, A.; Chin, M.L.; Li, L.-J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680. [Google Scholar] [CrossRef]
- Hoang, A.T.; Hu, L.; Kim, B.J.; Van, T.T.N.; Park, K.D.; Jeong, Y.; Lee, K.; Ji, S.; Hong, J.; Katiyar, A.K. Low-temperature growth of MoS2 on polymer and thin glass substrates for flexible electronics. Nat. Nanotechnol. 2023, 18, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xu, M.; Gao, J.; Zhang, X.; Huang, H.; Zhao, R.; Zhu, X.; Yang, Y.; Luo, L.; Chen, M. Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 2023, 35, 2207447. [Google Scholar] [CrossRef]
- Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H.-C.; Wu, H.; Huang, Y.; Duan, X. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143. [Google Scholar] [CrossRef]
- Choi, W.; Cho, M.Y.; Konar, A.; Lee, J.H.; Cha, G.B.; Hong, S.C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832. [Google Scholar] [CrossRef]
- Hong, S.; Zagni, N.; Choo, S.; Liu, N.; Baek, S.; Bala, A.; Yoo, H.; Kang, B.H.; Kim, H.J.; Yun, H.J. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 2021, 12, 3559. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, Z.; Xiao, Z.; Qian, Z.; Sun, Y.; Zeng, Z.; Wang, R. Flexible electronics based on 2D transition metal dichalcogenides. J. Mater. Chem. A 2022, 10, 89–121. [Google Scholar] [CrossRef]
- Kajale, S.N.; Yadav, S.; Cai, Y.; Joy, B.; Sarkar, D. 2D material based field effect transistors and nanoelectromechanical systems for sensing applications. IScience 2021, 24, 103513. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.H.; Jung, S.J.; Hong, S.; Lee, I.S.; Hong, S.; Kim, S.; Kim, H.J. Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer. J. Inf. Disp. 2020, 21, 123–130. [Google Scholar] [CrossRef]
- Lan, H.-Y.; Hsieh, Y.-H.; Chiao, Z.-Y.; Jariwala, D.; Shih, M.-H.; Yen, T.-J.; Hess, O.; Lu, Y.-J. Gate-tunable plasmon-enhanced photodetection in a monolayer MoS2 phototransistor with ultrahigh photoresponsivity. Nano Lett. 2021, 21, 3083–3091. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Xue, F.; Wang, L.; Chen, J.; Luo, J.; Jiang, T.; Zhang, C.; Wang, Z.L. Tribotronic enhanced photoresponsivity of a MoS2 phototransistor. Adv. Sci. 2016, 3, 1500419. [Google Scholar] [CrossRef]
- Park, J.; Hwang, J.C.; Kim, G.G.; Park, J.U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kang, B.H.; Kim, H.J. A review of low-temperature solution-processed metal oxide thin-film transistors for flexible electronics. Adv. Funct. Mater. 2020, 30, 1904632. [Google Scholar] [CrossRef]
- Tong, S.; Sun, J.; Yang, J. Printed thin-film transistors: Research from China. ACS Appl. Mater. Interfaces 2018, 10, 25902–25924. [Google Scholar] [CrossRef]
- Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678. [Google Scholar] [CrossRef]
- Deng, S.; Li, L.; Li, M. Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 101, 44–49. [Google Scholar] [CrossRef]
- Guo, S.; Wu, K.; Li, C.; Wang, H.; Sun, Z.; Xi, D.; Zhang, S.; Ding, W.; Zaghloul, M.E.; Wang, C. Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 2021, 4, 969–985. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Kim, H.; Ji, S.; Kim, H.J.; Kang, M.S.; Kim, T.S.; Won, J.-e.; Lee, J.-H.; Cheon, J.; Kang, K. Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions. Nano Lett. 2019, 20, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X.; Wang, G.; He, C.; Xie, L. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717. [Google Scholar] [CrossRef]
- Wang, T.Y.; Meng, J.L.; He, Z.Y.; Chen, L.; Zhu, H.; Sun, Q.Q.; Ding, S.J.; Zhou, P.; Zhang, D.W. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 2020, 7, 1903480. [Google Scholar] [CrossRef]
- Gong, Y.; Carozo, V.; Li, H.; Terrones, M.; Jackson, T.N. High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide. 2d Mater. 2016, 3, 021008. [Google Scholar] [CrossRef]
- Kim, R.H.; Lee, J.; Kim, K.L.; Cho, S.M.; Kim, D.H.; Park, C. Flexible nonvolatile transistor memory with solution-processed transition metal dichalcogenides. Small 2017, 13, 1603971. [Google Scholar] [CrossRef]
- Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, C.P.; Kim, S. Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137–1145. [Google Scholar] [CrossRef]
- Lee, G.-H.; Yu, Y.-J.; Cui, X.; Petrone, N.; Lee, C.-H.; Choi, M.S.; Lee, D.-Y.; Lee, C.; Yoo, W.J.; Watanabe, K. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936. [Google Scholar] [CrossRef]
- Lee, H.; Lee, K.; Kim, Y.; Ji, H.; Choi, J.; Kim, M.; Ahn, J.-P.; Kim, G.-T. Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications. Nanoscale 2019, 11, 22118–22124. [Google Scholar] [CrossRef]
- Podzorov, V.; Gershenson, M.; Kloc, C.; Zeis, R.; Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 2004, 84, 3301–3303. [Google Scholar] [CrossRef]
- Pu, J.; Yomogida, Y.; Liu, K.-K.; Li, L.-J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013–4017. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, G.A.; Munzenrieder, N.; Barraud, C.; Petti, L.; Zysset, C.; Buthe, L.; Ensslin, K.; Troster, G. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano 2013, 7, 8809–8815. [Google Scholar] [CrossRef] [PubMed]
- Sirota, B.; Glavin, N.; Voevodin, A.A. Room temperature magnetron sputtering and laser annealing of ultrathin MoS2 for flexible transistors. Vacuum 2019, 160, 133–138. [Google Scholar] [CrossRef]
- Chang, H.-Y.; Yang, S.; Lee, J.; Tao, L.; Hwang, W.-S.; Jena, D.; Lu, N.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446–5452. [Google Scholar] [CrossRef]
- Das, S.; Sebastian, A.; Pop, E.; McClellan, C.J.; Franklin, A.D.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.V.; Appenzeller, J. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 2021, 4, 786–799. [Google Scholar] [CrossRef]
- Das, T.; Chen, X.; Jang, H.; Oh, I.K.; Kim, H.; Ahn, J.H. Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small 2016, 12, 5720–5727. [Google Scholar] [CrossRef]
- Yoon, J.; Park, W.; Bae, G.Y.; Kim, Y.; Jang, H.S.; Hyun, Y.; Lim, S.K.; Kahng, Y.H.; Hong, W.K.; Lee, B.H. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 2013, 9, 3295–3300. [Google Scholar] [CrossRef]
- Daus, A.; Vaziri, S.; Chen, V.; Köroğlu, Ç.; Grady, R.W.; Bailey, C.S.; Lee, H.R.; Schauble, K.; Brenner, K.; Pop, E. High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 2021, 4, 495–501. [Google Scholar] [CrossRef]
- Song, W.G.; Kwon, H.J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K.U.; Grigoropoulos, C.P.; Kim, S. High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 2016, 26, 2426–2434. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Su, C.; Chen, X.; Li, B.; Jiang, W.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z. Hierarchical WS2–WO3 nanohybrids with P–N heterojunctions for NO2 detection. ACS Appl. Nano Mater. 2021, 4, 1626–1634. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Su, C.; Wang, S.; Li, H.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H. Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sens. Actuators B Chem. 2019, 296, 126666. [Google Scholar] [CrossRef]
- He, Q.; Zeng, Z.; Yin, Z.; Li, H.; Wu, S.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Han, J.; Kang, M.-A.; Song, W.; Myung, S.; Kim, S.-W.; Lee, S.S.; Lim, J.; An, K.-S. Flexible chemical sensors based on hybrid layer consisting of molybdenum disulphide nanosheets and carbon nanotubes. Carbon 2018, 129, 607–612. [Google Scholar] [CrossRef]
- Kim, S.J.; Mondal, S.; Min, B.K.; Choi, C.-G. Highly sensitive and flexible strain–pressure sensors with cracked paddy-shaped MoS2/graphene foam/Ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 36377–36384. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, S.-K.; Oh, N.-C.; Lee, H.-D.; Lee, S.-M.; Park, J.; Kim, H. Improved sensitivity in Schottky contacted two-dimensional MoS2 gas sensor. ACS Appl. Mater. Interfaces 2019, 11, 38902–38909. [Google Scholar] [CrossRef]
- Li, P.; Zhang, D.; Wu, Z. Flexible MoS2 sensor arrays for high performance label-free ion sensing. Sens. Actuators A Phys. 2019, 286, 51–58. [Google Scholar] [CrossRef]
- Medina, H.; Li, J.-G.; Su, T.-Y.; Lan, Y.-W.; Lee, S.-H.; Chen, C.-W.; Chen, Y.-Z.; Manikandan, A.; Tsai, S.-H.; Navabi, A. Wafer-scale growth of wse2 monolayers toward phase-engineered hybrid wo x/wse2 films with sub-ppb no x gas sensing by a low-temperature plasma-assisted selenization process. Chem. Mater. 2017, 29, 1587–1598. [Google Scholar] [CrossRef]
- Qin, Z.; Song, X.; Wang, J.; Li, X.; Wu, C.; Wang, X.; Yin, X.; Zeng, D. Development of flexible paper substrate sensor based on 2D WS2 with S defects for room-temperature NH3 gas sensing. Appl. Surf. Sci. 2022, 573, 151535. [Google Scholar] [CrossRef]
- Selamneni, V.; Ganeshan, S.K.; Nerurkar, N.; Akshaya, T.; Sahatiya, P. Facile fabrication of MoSe2 on paper as an electromechanical piezoresistive pressure–strain sensor. IEEE Trans. Instrum. Meas. 2020, 70, 6002408. [Google Scholar]
- Sha, R.; Vishnu, N.; Badhulika, S. MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sens. Actuators B Chem. 2019, 279, 53–60. [Google Scholar] [CrossRef]
- Shadman, A.; Rahman, E.; Khosru, Q.D. Monolayer MoS2 and WSe2 double gate field effect transistor as super nernst pH sensor and nanobiosensor. Sens. Bio-Sens. Res. 2016, 11, 45–51. [Google Scholar] [CrossRef]
- Wagner, S.; Yim, C.; McEvoy, N.; Kataria, S.; Yokaribas, V.; Kuc, A.; Pindl, S.; Fritzen, C.-P.; Heine, T.; Duesberg, G.S. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 2018, 18, 3738–3745. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, H.; Li, X.; Yang, C.; Xia, Y. Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sens. Actuators B Chem. 2020, 304, 127317. [Google Scholar] [CrossRef]
- Naqi, M.; Kim, B.; Kim, S.W.; Kim, S. Pulsed gate switching of MoS2 field-effect transistor based on flexible polyimide substrate for ultrasonic detectors. Adv. Funct. Mater. 2021, 31, 2007389. [Google Scholar] [CrossRef]
- Daus, A.; Jaikissoon, M.; Khan, A.I.; Kumar, A.; Grady, R.W.; Saraswat, K.C.; Pop, E. Fast-response flexible temperature sensors with atomically thin molybdenum disulfide. Nano Lett. 2022, 22, 6135–6140. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Pan, L.; Yao, Z.; Li, J.; Shi, Y.; Wang, X. Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 2012, 100, 123104. [Google Scholar] [CrossRef]
- McClellan, C.J.; Yalon, E.; Smithe, K.K.; Suryavanshi, S.V.; Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 2021, 15, 1587–1596. [Google Scholar] [CrossRef]
- Velusamy, D.B.; Kim, R.H.; Cha, S.; Huh, J.; Khazaeinezhad, R.; Kassani, S.H.; Song, G.; Cho, S.M.; Cho, S.H.; Hwang, I. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun. 2015, 6, 8063. [Google Scholar] [CrossRef]
- De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262. [Google Scholar] [CrossRef]
- Gong, Y.; Li, B.; Ye, G.; Yang, S.; Zou, X.; Lei, S.; Jin, Z.; Bianco, E.; Vinod, S.; Yakobson, B.I. Direct growth of MoS2 single crystals on polyimide substrates. 2d Mater. 2017, 4, 021028. [Google Scholar] [CrossRef]
- Li, F.; Shen, T.; Xu, L.; Hu, C.; Qi, J. Strain improving the performance of a flexible monolayer MoS2 photodetector. Adv. Electron. Mater. 2019, 5, 1900803. [Google Scholar] [CrossRef]
- Lim, Y.R.; Song, W.; Han, J.K.; Lee, Y.B.; Kim, S.J.; Myung, S.; Lee, S.S.; An, K.S.; Choi, C.J.; Lim, J. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5030. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, E.; Amiri, M.H.; Salimi, A.; Frisenda, R.; Flores, E.; Ares, J.R.; Ferrer, I.J.; Castellanos-Gomez, A.; Ghasemi, F. based broadband flexible photodetectors with van der Waals materials. Sci. Rep. 2022, 12, 12585. [Google Scholar] [CrossRef]
- Yu, F.; Hu, M.; Kang, F.; Lv, R. Flexible photodetector based on large-area few-layer MoS2. Prog. Nat. Sci. Mater. Int. 2018, 28, 563–568. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Chen, Y.; Wang, Z.; Shen, H.; Lin, T.; Hu, W.; Wang, J.; Zhang, S.; Meng, X. Ultrahigh photoresponsivity MoS2 photodetector with tunable photocurrent generation mechanism. Nanotechnology 2018, 29, 485204. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Yang, J.; Xue, M.; Wu, S.; Xiao, S.; Song, F.; Dang, J.; Sun, S.; Zuo, Z. Strong light–matter interactions between gap plasmons and two-dimensional excitons under ambient conditions in a deterministic way. Nano Lett. 2022, 22, 2177–2186. [Google Scholar] [CrossRef]
- Han, P.; Adler, E.R.; Liu, Y.; St Marie, L.; El Fatimy, A.; Melis, S.; Van Keuren, E.; Barbara, P. Ambient effects on photogating in MoS2 photodetectors. Nanotechnology 2019, 30, 284004. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Lou, Q.; Zhang, Y.; Chen, Y.; Lu, Y.; Dong, L.; Shan, C.-X. Fabry-Perot interference and piezo-phototronic effect enhanced flexible MoS2 photodetector. Nano Res. 2022, 15, 4395–4402. [Google Scholar] [CrossRef]
- Yore, A.E.; Smithe, K.K.; Jha, S.; Ray, K.; Pop, E.; Newaz, A. Large array fabrication of high performance monolayer MoS2 photodetectors. Appl. Phys. Lett. 2017, 111, 043110. [Google Scholar] [CrossRef]
- Park, M.J.; Park, K.; Ko, H. Near-infrared photodetector achieved by chemically-exfoliated multilayered MoS2 flakes. Appl. Surf. Sci. 2018, 448, 64–70. [Google Scholar] [CrossRef]
- Kang, M.-A.; Kim, S.; Jeon, I.-S.; Lim, Y.R.; Park, C.-Y.; Song, W.; Lee, S.S.; Lim, J.; An, K.-S.; Myung, S. Highly efficient and flexible photodetector based on MoS2–ZnO heterostructures. RSC Adv. 2019, 9, 19707–19711. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.; Sangwan, V.K.; Rangnekar, S.V.; Chu, T.C.; Lam, D.; Zhu, Z.; Richter, L.J.; Li, R.; Szydłowska, B.M.; Downing, J.R. All-Printed ultrahigh-responsivity MoS2 nanosheet photodetectors enabled by megasonic exfoliation. Adv. Mater. 2022, 34, 2203772. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Park, Y.J.; Sharma, B.K.; Bae, S.-R.; Kim, S.Y.; Ahn, J.-H. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor. Sci. Adv. 2018, 4, eaas8721. [Google Scholar] [CrossRef] [PubMed]
- Hwangbo, S.; Hu, L.; Hoang, A.T.; Choi, J.Y.; Ahn, J.-H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 2022, 17, 500–506. [Google Scholar] [CrossRef]
- Meng, W.; Xu, F.; Yu, Z.; Tao, T.; Shao, L.; Liu, L.; Li, T.; Wen, K.; Wang, J.; He, L. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 2021, 16, 1231–1236. [Google Scholar] [CrossRef]
- Woo, Y.; Hong, W.; Yang, S.Y.; Kim, H.J.; Cha, J.H.; Lee, J.E.; Lee, K.J.; Kang, T.; Choi, S.Y. Large-area CVD-grown MoS2 driver circuit array for flexible organic light-emitting diode display. Adv. Electron. Mater. 2018, 4, 1800251. [Google Scholar] [CrossRef]
- Jadwiszczak, J.; Keane, D.; Maguire, P.; Cullen, C.P.; Zhou, Y.; Song, H.; Downing, C.; Fox, D.; McEvoy, N.; Zhu, R. MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 2019, 13, 14262–14273. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Jariwala, D.; Kim, I.S.; Chen, K.-S.; Marks, T.J.; Lauhon, L.J.; Hersam, M.C. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 2015, 10, 403–406. [Google Scholar] [CrossRef]
- Sangwan, V.K.; Lee, H.-S.; Bergeron, H.; Balla, I.; Beck, M.E.; Chen, K.-S.; Hersam, M.C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504. [Google Scholar] [CrossRef]
- Yin, S.; Song, C.; Sun, Y.; Qiao, L.; Wang, B.; Sun, Y.; Liu, K.; Pan, F.; Zhang, X. Electric and light dual-gate tunable MoS2 memtransistor. ACS Appl. Mater. Interfaces 2019, 11, 43344–43350. [Google Scholar] [CrossRef] [PubMed]
- Vélez, S.; Island, J.; Buscema, M.; Txoperena, O.; Parui, S.; Steele, G.A.; Casanova, F.; van der Zant, H.S.; Castellanos-Gomez, A.; Hueso, L.E. Gate-tunable diode and photovoltaic effect in an organic–2D layered material p–n junction. Nanoscale 2015, 7, 15442–15449. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhuge, F.; Hou, J.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 2018, 12, 4062–4073. [Google Scholar] [CrossRef]
- Fortin, E.; Sears, W. Photovoltaic effect and optical absorption in MoS2. J. Phys. Chem. Solids 1982, 43, 881–884. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Sarkar, P.K.; Prajapat, M.; Roy, A. Electrical reliability, multilevel data storage and mechanical stability of MoS2-PMMA nanocomposite-based non-volatile memory device. J. Phys. D Appl. Phys. 2017, 50, 265103. [Google Scholar] [CrossRef]
- Han, S.T.; Zhou, Y.; Chen, B.; Wang, C.; Zhou, L.; Yan, Y.; Zhuang, J.; Sun, Q.; Zhang, H.; Roy, V.A. Hybrid Flexible Resistive Random Access Memory-Gated Transistor for Novel Nonvolatile Data Storage. Small 2016, 12, 390–396. [Google Scholar] [CrossRef]
- Rehman, M.M.; Siddiqui, G.U.; Gul, J.Z.; Kim, S.-W.; Lim, J.H.; Choi, K.H. Resistive switching in all-printed, flexible and hybrid MoS2-PVA nanocomposite based memristive device fabricated by reverse offset. Sci. Rep. 2016, 6, 36195. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, C.; Xu, B.; Qi, L.; Jiang, C.; Gao, M.; Xue, D. Structural phase transition effect on resistive switching behavior of MoS2-polyvinylpyrrolidone nanocomposites films for flexible memory devices. Small 2016, 12, 2077–2084. [Google Scholar] [CrossRef]
- Zhao, X.; Fan, Z.; Xu, H.; Wang, Z.; Xu, J.; Ma, J.; Liu, Y. Reversible alternation between bipolar and unipolar resistive switching in Ag/MoS2/Au structure for multilevel flexible memory. J. Mater. Chem. C 2018, 6, 7195–7200. [Google Scholar] [CrossRef]
- Hong, S.; Park, J.; Lee, J.J.; Lee, S.; Yun, K.; Yoo, H.; Kim, S. Multifunctional molybdenum disulfide flash memory using a PEDOT: PSS floating gate. NPG Asia Mater. 2021, 13, 38. [Google Scholar] [CrossRef]
- Chee, S.-S.; Jang, H.; Lee, K.; Ham, M.-H. Substitutional fluorine doping of large-area molybdenum disulfide monolayer films for flexible inverter device arrays. ACS Appl. Mater. Interfaces 2020, 12, 31804–31809. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, D.; Zhang, D.; Ma, J.; Wang, X.; Chen, X.; Tong, L.; Zhang, X.; Zhu, J.; Yang, P. Large-scale and stacked transfer of bilayers MoS2 devices on a flexible polyimide substrate. Nanotechnology 2023, 35, 045201. [Google Scholar] [CrossRef] [PubMed]
- Shinde, S.M.; Das, T.; Hoang, A.T.; Sharma, B.K.; Chen, X.; Ahn, J.H. Surface-functionalization-mediated direct transfer of molybdenum disulfide for large-area flexible devices. Adv. Funct. Mater. 2018, 28, 1706231. [Google Scholar] [CrossRef]
- Tang, J.; Wang, Q.; Tian, J.; Li, X.; Li, N.; Peng, Y.; Li, X.; Zhao, Y.; He, C.; Wu, S. Low power flexible monolayer MoS2 integrated circuits. Nat. Commun. 2023, 14, 3633. [Google Scholar] [CrossRef]
- Yu, L.; El-Damak, D.; Ha, S.; Rakheja, S.; Ling, X.; Kong, J.; Antoniadis, D.; Chandrakasan, A.; Palacios, T. MoS2 FET fabrication and modeling for large-scale flexible electronics. In Proceedings of the 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 16–18 June 2015; pp. T144–T145. [Google Scholar]
- Hong, S.; Cho, H.; Kang, B.H.; Park, K.; Akinwande, D.; Kim, H.J.; Kim, S. Neuromorphic active pixel image sensor array for visual memory. ACS Nano 2021, 15, 15362–15370. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Schwacke, M.; Onen, M.; Del Alamo, J.; Li, J.; Yildiz, B. Electrochemical ionic synapses: Progress and perspectives. Adv. Mater. 2023, 35, 2205169. [Google Scholar] [CrossRef]
- Qin, W.; Kang, B.H.; Kim, H.J. Flexible artificial synapses with a biocompatible Maltose–Ascorbic acid electrolyte gate for neuromorphic computing. ACS Appl. Mater. Interfaces 2021, 13, 34597–34604. [Google Scholar] [CrossRef]
Application | Fabrication | Layers of MoS2 | Device Structure | Types of Substrates | Ion/Ioff | µFE (cm2 V−1 s−1) | Mechanical Stability | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
Strain | Bending Radius | |||||||||
Transistor | CVD | Monolayer | Top gate | Polyimide (PI) | >106 (Vds = 1.4 V) | 8.1 (µFE,ext) | Tensile strain of <0.063% | R = 4 mm | [49] | |
Exfoliation | Multilayer | Top gate | PI/Polyethylene terephthalate (PET) | 5 × 105 (Vds = 1 V) | 141.3 | Total strain of <0.2% | R = 5–10 mm | [50] | ||
Sensor | Photo/glucose/temperature | Gold-mediated exfoliation | Monolayer | Top gate | Polydimethylsiloxane (PDMS) | 107 (Vds = −5 V) | 9.18 | Tensile strain of <2.0% | R > 4 mm | [32] |
Sonic detector | Exfoliation | Multilayer | Top gate | PI/PET | 105 (Vds = 1.4 V) | 18.12 | Total strain of <0.1% | R = 5 mm | [65] | |
Pressure | CVD | Monolayer | Top gate | PDMS | >106 (Vds = 1 V) | ≈23 | Remain stable during 2 × 103 bending cycles | - | [33] | |
Temperature | CVD | Monolayer | Top gate | PI | ≈108 (Vds = 1 V) | ≈20 | Remain stable during 103 bending cycles | R = 4 mm | [66] | |
Photo | Spin coating | Multilayer | Top gate | PET | - | - | Total strain of <3% | R = 3 mm | [82] | |
Megasonic exfoliation (MSE) | Mono- and bilayer | Bottom gate | PI | - | 0.7 | Remain stable during 103 bending cycles | R = 12 mm | [83] | ||
Display | CVD | Bilayer | Bottom gate | PET | ≈108 (Vds = 5 V) | 18.1 | Total strain of <3% | R = 0.7 mm | [84] | |
Memory device | Exfoliation | Multilayer | Top gate | PI | 107 (Vds = 1 V) | - | Remain stable during 103 bending cycles | R = 5 mm | [100] | |
Login circuit | CVD | Monolayer | Top gate | PET | 1010 (Vds = 1 V) | ≈55 | Tensile strain of <1% | - | [34] | |
Neuromorphic device | Exfoliation | Multilayer | Top gate | PET | >106 (Vds = 0.5 V) | - | Remain stable during 103 bending cycles | R = 5 mm | [35] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, K.; Yoon, H.; Hong, S.; Kang, B.H. Advances in 2D Molybdenum Disulfide Transistors for Flexible and Wearable Electronics. Micromachines 2024, 15, 1476. https://doi.org/10.3390/mi15121476
Kwak K, Yoon H, Hong S, Kang BH. Advances in 2D Molybdenum Disulfide Transistors for Flexible and Wearable Electronics. Micromachines. 2024; 15(12):1476. https://doi.org/10.3390/mi15121476
Chicago/Turabian StyleKwak, Kyoungwon, Hyewon Yoon, Seongin Hong, and Byung Ha Kang. 2024. "Advances in 2D Molybdenum Disulfide Transistors for Flexible and Wearable Electronics" Micromachines 15, no. 12: 1476. https://doi.org/10.3390/mi15121476
APA StyleKwak, K., Yoon, H., Hong, S., & Kang, B. H. (2024). Advances in 2D Molybdenum Disulfide Transistors for Flexible and Wearable Electronics. Micromachines, 15(12), 1476. https://doi.org/10.3390/mi15121476