Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser
Abstract
1. Introduction
2. Experiments
2.1. Materials and Sample Preparation
2.2. Laser Processing and Perfluorosilane Modification
2.3. Characterization
2.4. Durability Test
3. Results and Discussion
3.1. Fabrication and Characterization of Micro/Nanostructured Surfaces
3.2. Chemical Changes After Laser Processing and Perfluorosilane Modification
3.3. The Optical Property of the Micro/Nanostructured Surfaces
3.3.1. The Anti-Reflective Principle of Micro/Nanostructures
3.3.2. The Anti-Reflective Performance of the Micro/Nanostructured Surfaces
3.4. Wettability of the Micro/Nanostructured Surfaces
3.5. Durability of Anti-Reflection and Self-Cleaning Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brunner, R.; Sandfuchs, O.; Pacholski, C.; Morhard, C.; Spatz, J. Lessons from nature: Biomimetic subwavelength structures for high-performance optics. Laser Photonics Rev. 2011, 6, 641–659. [Google Scholar] [CrossRef]
- Chee, K.W.A.; Tang, Z.; Lu, H.; Huang, F. Anti-reflective structures for photovoltaics: Numerical and experimental design. Energy Rep. 2018, 4, 266–273. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, L.; Wang, T.; Wang, X.; Du, X.; Hao, R.; Liu, J.; Zhang, J. Synchronous Phase-Shifting Interference for High Precision Phase Imaging of Objects Using Common Optics. Sensors 2023, 23, 4339. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Luo, F.; Kao, T.; Li, X.; Ho, G.; Teng, J.; Luo, X.; Hong, M. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light Sci. Appl. 2014, 3, e185. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Liu, Z. Preparation of Anti-reflective Coatings on Solar Glass. Asian J. Chem. 2013, 25, 5787–5789. [Google Scholar] [CrossRef]
- Papatzacos, P.H.; Akram, M.N.; Hector, O.; Lemarquis, F.; Moreau, A.; Lumeau, J.; Ohlckers, P. Temperature resistant anti-reflective coating on Si-wafer for long-wave infra-red imaging. Heliyon 2023, 9, e15888. [Google Scholar] [CrossRef]
- Ali, K.; Khan, S.A.; Jafri, M.Z.M. Effect of Double Layer (SiO2/TiO2) Anti-reflective Coating on Silicon Solar Cells. Int. J. Electrochem. Sci. 2014, 9, 7865–7874. [Google Scholar] [CrossRef]
- Raut, H.K.; Dinachali, S.S.; He, A.Y.; Ganesh, V.A.; Saifullah, M.S.M.; Law, J.; Ramakrishna, S. Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties. Energy Environ. Sci. 2013, 6, 1929–1937. [Google Scholar] [CrossRef]
- Busse, L.E.; Florea, C.M.; Frantz, J.A.; Shaw, L.B.; Aggarwal, I.D.; Poutous, M.K.; Joshi, R.; Sanghera, J.S. Anti-reflective surface structures for spinel ceramics and fused silica windows, lenses and optical fibers. Opt. Mater. Express 2014, 4, 2504–2515. [Google Scholar] [CrossRef]
- Fan, P.; Bai, B.; Zhong, M.; Zhang, H.; Long, J.; Han, J.; Wang, W.; Jin, G. General Strategy toward Dual-Scale-Controlled Metallic Micro-Nano Hybrid Structures with Ultralow Reflectance. ACS Nano 2017, 11, 7401–7408. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, S.; Tao, K.; Jia, R.; Ge, H.; Li, X.; Wang, B.; Li, M.; Ji, Z.; Gao, Z.; et al. Fabrication of inverted pyramid structure for high-efficiency silicon solar cells using metal assisted chemical etching method with CuSO4 etchant. Solar Energy Mater. Sol. Cells 2021, 230, 111200. [Google Scholar] [CrossRef]
- Chan, L.W.; Morse, D.E.; Gordon, M.J. Moth eye-inspired anti-reflective surfaces for improved IR optical systems & visible LEDs fabricated with colloidal lithography and etching. Bioinspiration Biomim. 2018, 13, 041001. [Google Scholar] [CrossRef]
- Yanagishita, T.; Nishio, K.; Masuda, H. Anti-Reflection Structures on Lenses by Nanoimprinting Using Ordered Anodic Porous Alumina. Appl. Phys. Express 2009, 2, 022001. [Google Scholar] [CrossRef]
- Said, S.A.M.; Walwil, H.M. Fundamental studies on dust fouling effects on PV module performance. Sol. Energy 2014, 107, 328–337. [Google Scholar] [CrossRef]
- Said, S.A.M.; Al-Aqeeli, N.; Walwil, H.M. The potential of using textured and anti-reflective coated glasses in minimizing dust fouling. Sol. Energy 2015, 113, 295–302. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, F.; Niu, J.; Jiang, Y.; Wang, Z. Superhydrophobic surfaces: From structural control to functional application. J. Mater. Chem. 2008, 18, 621–633. [Google Scholar] [CrossRef]
- Lu, Y.; Sathasivam, S.; Song, J.; Crick, C.; Carmalt, C.; Parkin, I. Robust self-cleaning surfaces that function when exposed to either air or oil. Science 2015, 347, 1132–1135. [Google Scholar] [CrossRef]
- Weng, W.; Zheng, X.; Tenjimbayashi, M.; Watanabe, I.; Naito, M. De-icing performance evolution with increasing hydrophobicity by regulating surface topography. Sci. Technol. Adv. Mater. 2024, 25, 2334199. [Google Scholar] [CrossRef]
- Bhushan, B.; Jung, Y.C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 2011, 56, 1–108. [Google Scholar] [CrossRef]
- Saira, I. Fabrication and characterization of durable superhydrophobic and superoleophobic surfaces on stainless steel mesh substrates. Mater. Res. Express 2024, 11, 036401. [Google Scholar] [CrossRef]
- Xiao, J.; Luo, Y.; Niu, M.; Wang, Q.; Wu, J.; Liu, X.; Xu, J. Study of imbibition in various geometries using phase field method. Capillarity 2019, 2, 57–65. [Google Scholar] [CrossRef]
- Wang, L.; Liu, K.; Yin, M.; Yin, B.; Liu, X.; Tang, S. Anti-reflection silica coating simultaneously achieving superhydrophobicity and robustness. J. Sol-Gel Sci. Technol. 2024, 109, 835–848. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, R.; Zhang, H.; Ye, Y.; Chen, Z.; Zhang, A. Novel Superhydrophobic Copper Mesh-Based Centrifugal Device for Edible Oil-Water Separation. ACS Omega 2024, 9, 16303–16310. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Deng, D.; Zhai, Z.; Yao, Y. Laser-processed functional surface structures for multi-functional applications—A review. J. Manuf. Process. 2024, 116, 247–283. [Google Scholar] [CrossRef]
- Yasuda, K.; Hayashi, Y.; Homma, T. Fabrication of Superhydrophobic Nanostructures on Glass Surfaces Using Hydrogen Fluoride Gas. ACS Omega 2024, 9, 12204–12210. [Google Scholar] [CrossRef] [PubMed]
- Minakov, A.V.; Pryazhnikov, M.I.; Neverov, A.L.; Sukhodaev, P.O.; Zhigarev, V.A. Wettability, interfacial tension, and capillary imbibition of nanomaterial-modified cross-linked gels for hydraulic fracturing. Capillarity 2024, 12, 27–40. [Google Scholar] [CrossRef]
- Choi, S.J.; Huh, S.Y. Direct Structuring of a Biomimetic Anti-Reflective, Self-Cleaning Surface for Light Harvesting in Organic Solar Cells. Macromol. Rapid Commun. 2010, 31, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Du, H.; Ma, Z.; Li, W.; Zhao, H.; Wen, C.; Ren, L. Hierarchical composite structure to simultaneously realize superior superhydrophobicity and anti-reflection. Appl. Surf. Sci. 2023, 611, 155652. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Li, Z.; Zhou, W.; Zheng, J.; Yang, D. Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method. Mater. Express 2015, 5, 280–290. [Google Scholar] [CrossRef]
- Hu, Y.; Duan, J.; Yang, X.; Zhang, C.; Fu, W. Wettability and biological responses of titanium surface’s biomimetic hexagonal microstructure. J. Biomater. Appl. 2022, 37, 1112–1123. [Google Scholar] [CrossRef]
- Du, M.; Sun, Q.; Jiao, W.; Shen, L.; Chen, X.; Xiao, J.; Xu, J. Fabrication of Antireflection Micro/Nanostructures on the Surface of Aluminum Alloy by Femtosecond Laser. Micromachines 2021, 12, 1406. [Google Scholar] [CrossRef] [PubMed]
- Boinovich, L.B.; Domantovskiy, A.G.; Emelyanenko, A.M.; Pashinin, A.S.; Ionin, A.A.; Kudryashov, S.I.; Saltuganov, P.N. Femtosecond laser treatment for the design of electro-insulating superhydrophobic coatings with enhanced wear resistance on glass. ACS Appl. Mater. Interfaces 2014, 6, 2080–2085. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.; Yao, P.; Huang, C. Anti-reflection silicon with self-cleaning processed by femtosecond laser. Opt. Laser Technol. 2021, 136, 106790. [Google Scholar] [CrossRef]
- Oh, S.; Cho, J.W.; Lee, J.; Han, J.; Kim, S.K.; Nam, Y. A Scalable Haze-Free Antireflective Hierarchical Surface with Self-Cleaning Capability. Adv. Sci. 2022, 9, 2202781. [Google Scholar] [CrossRef] [PubMed]
- Verma, L.K.; Sakhuja, M.; Son, J.; Danner, A.J.; Yang, H.; Zeng, H.C.; Bhatia, C.S. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energy 2011, 36, 2489–2493. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Chen, J.; Li, Q.; Tang, F.; Ye, X.; Zheng, W. Wide-Spectrum Antireflective Properties of Germanium by Femtosecond Laser Raster-Type In Situ Repetitive Direct Writing Technique. Coatings 2024, 14, 262. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, J.; Yu, J.; Qi, H.; Ma, Y.; Wang, H.; Guo, Z. Fabrication of Anti-Reflective Surface with Superhydrophobicity/High Oleophobicity and Enhanced Mechanical Durability via Nanosecond Laser Surface Texturing. Materials 2020, 13, 5691. [Google Scholar] [CrossRef]
- Barthwal, S.; Kim, Y.S.; Lim, S.-H. Mechanically Robust Superamphiphobic Aluminum Surface with Nanopore-Embedded Microtexture. Langmuir 2013, 29, 11966–11974. [Google Scholar] [CrossRef]
- Hoque, E.; DeRose, J.A.; Hoffmann, P.; Mathieu, H.J.; Bhushan, B.; Cichomski, M. Phosphonate self-assembled monolayers on aluminum surfaces. J. Chem. Phys. 2006, 124, 174710. [Google Scholar] [CrossRef]
- Lee, J.-M.; Kim, S.J.; Kim, J.W.; Kang, P.H.; Nho, Y.C.; Lee, Y.-S. A high resolution XPS study of sidewall functionalized MWCNTs by fluorination. J. Ind. Eng. Chem. 2009, 15, 66–71. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, W.; Jiang, G.; Mei, X. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination. Appl. Phys. B 2016, 122, 180. [Google Scholar] [CrossRef]
- Duan, M.; Wu, J.; Zhang, Y.; Zhang, N.; Chen, J.; Lei, Z.; Yi, Z.; Ye, X. Ultra-Low-Reflective, Self-Cleaning Surface by Fabrication Dual-Scale Hierarchical Optical Structures on Silicon. Coatings 2021, 11, 1541. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, P.; Zhang, D. Super-hydrophobic film fabricated on aluminium surface as a barrier to atmospheric corrosion in a marine environment. Corros. Sci. 2015, 91, 287–296. [Google Scholar] [CrossRef]
S/N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Height (μm) | 5 | 15 | 30 | 40 | 25 | 30 | ||||||
Duty cycle | 1 | 0.25 | 0.5 | 0.75 | 1 | 1 | ||||||
Size (μm) | 30 | 30 | 30 | 60 | 90 | 120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, J.; Long, G.; Xu, X.; Liu, W.; Li, C.; Chen, L.; Zhang, J.; Xiao, J. Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser. Micromachines 2024, 15, 1304. https://doi.org/10.3390/mi15111304
Duan J, Long G, Xu X, Liu W, Li C, Chen L, Zhang J, Xiao J. Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser. Micromachines. 2024; 15(11):1304. https://doi.org/10.3390/mi15111304
Chicago/Turabian StyleDuan, Junyu, Gui Long, Xu Xu, Weiming Liu, Chuankun Li, Liang Chen, Jianguo Zhang, and Junfeng Xiao. 2024. "Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser" Micromachines 15, no. 11: 1304. https://doi.org/10.3390/mi15111304
APA StyleDuan, J., Long, G., Xu, X., Liu, W., Li, C., Chen, L., Zhang, J., & Xiao, J. (2024). Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser. Micromachines, 15(11), 1304. https://doi.org/10.3390/mi15111304