A Highly Sensitive Strain Sensor with Self-Assembled MXene/Multi-Walled Carbon Nanotube Sliding Networks for Gesture Recognition
Abstract
1. Introduction
2. Experimental
2.1. Material
2.2. Instruments
2.3. Preparation of MXene and MWCNT Suspension
2.4. Preparation of PDMS Film by Plasma
2.5. Fabrication of PDMS/MXene/MWCNT Strain Sensor
2.6. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Cho, K.; Kim, J.K. Age of flexible electronics: Emerging trends in soft multifunctional sensors. Adv. Mater. 2024, 36, 2310505. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Liu, C.; Hao, H.; Wang, X.; Chen, H.; Ruan, Y.; Huang, J. Recent advances in wearable flexible electronic skin: Types, power supply methods, and development prospects. J. Biomater. Sci. Polym. Ed. 2024, 35, 1455–1492. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Guo, X.; Zhang, T.; Zhu, X.; Su, Z.; Meng, Y.; Zhao, Y.; Xu, D.; Pan, J.; Huang, Y. Dual bionic-inspired stretchable strain sensor based on graphene/multi-walled carbon nanotubes/polymer composites for electronic skin. Compos. Part A Appl. Sci. Manuf. 2024, 179, 108043. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, M.; He, Y.; Wang, L.; Song, H.; Du, H.; Liu, H.; Liu, C. Flexible porous non-woven silk fabric based conductive composite for efficient multimodal sensing. Chem. Eng. J. 2024, 497, 154445. [Google Scholar] [CrossRef]
- Guo, X.; Liu, T.; Tang, Y.; Li, W.; Liu, L.; Wang, D.; Zhang, Y.; Zhang, T.; Zhu, X.; Guan, Y. Bioinspired Low Hysteresis Flexible Pressure Sensor Using Nanocomposites of Multiwalled Carbon Nanotubes, Silicone Rubber, and Carbon Nanofiber for Human–Computer Interaction. ACS Appl. Nano Mater. 2024, 7, 15626–15639. [Google Scholar] [CrossRef]
- Zhai, K.; Wang, H.; Ding, Q.; Wu, Z.; Ding, M.; Tao, K.; Yang, B.R.; Xie, X.; Li, C.; Wu, J. High-Performance Strain Sensors Based on Organohydrogel Microsphere Film for Wearable Human–Computer Interfacing. Adv. Sci. 2023, 10, 2205632. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, Y.; Ma, Z.; Shi, Y.; Zhu, Y.; Huang, R.; Feng, Y.; Wang, Z.; Hong, M.; Gao, J. Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 2023, 33, 2306884. [Google Scholar] [CrossRef]
- Wang, J.; Cui, X.; Song, Y.; Chen, J.; Zhu, Y. Flexible iontronic sensors with high-precision and high-sensitivity detection for pressure and temperature. Compos. Commun. 2023, 39, 101544. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Yang, G.; Huang, P.; Hu, J.-M.; Tang, Z.-H.; Li, Y.-Q.; Fu, S.-Y. Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring. ACS Appl. Mater. Interfaces 2023, 15, 3476–3485. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, J.; Lu, G.; Sun, J.; Tang, L. Highly stretchable, transparent, and self-adhesive ionic conductor for high-performance flexible sensors. ACS Appl. Polym. Mater. 2021, 3, 1610–1617. [Google Scholar] [CrossRef]
- Su, Y.; Ma, K.; Yuan, F.; Tang, J.; Liu, M.; Zhang, X. High-performance flexible piezoresistive sensor based on Ti3C2Tx MXene with a honeycomb-like structure for human activity monitoring. Micromachines 2022, 13, 821. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.A.U.; Chang, S.H. Flexible strain sensors for wearable applications fabricated using novel functional nanocomposites: A review. Compos. Struct. 2022, 284, 115214. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, D.; Liu, S.; Cai, Y.; Shan, L.; Chen, C.; Chen, H.; Liu, Y.; Guo, T.; Chen, H. Toward Intelligent Display with Neuromorphic Technology. Adv. Mater. 2024, 36, e2401821. [Google Scholar] [CrossRef]
- Afsarimanesh, N.; Nag, A.; Sarkar, S.; Sabet, G.S.; Han, T.; Mukhopadhyay, S.C. A review on fabrication, characterization and implementation of wearable strain sensors. Sens. Actuators A Phys. 2020, 315, 112355. [Google Scholar] [CrossRef]
- Cheng, H.-W.; Yan, S.; Shang, G.; Wang, S.; Zhong, C.-J. Strain sensors fabricated by surface assembly of nanoparticles. Biosens. Bioelectron. 2021, 186, 113268. [Google Scholar] [CrossRef]
- Choi, Y.K.; Park, T.; Lee, D.H.D.; Ahn, J.; Kim, Y.H.; Jeon, S.; Han, M.J.; Oh, S.J. Wearable anti-temperature interference strain sensor with metal nanoparticle thin film and hybrid ligand exchange. Nanoscale 2022, 14, 8628–8639. [Google Scholar] [CrossRef]
- Ketelsen, B.; Schlicke, H.; Schulze, V.R.; Bittinger, S.C.; Wu, S.D.; Hsu, S.H.; Vossmeyer, T. Nanoparticle-Based Strain Gauges: Anisotropic Response Characteristics, Multidirectional Strain Sensing, and Novel Approaches to Healthcare Applications. Adv. Funct. Mater. 2023, 33, 2210065. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Lin, Z.; Lei, Z.; Xiong, Y.; Hu, Y.; Zhu, P.; Sun, R.; Wong, C.P. Highly sensitive and stretchable strain sensor based on a synergistic hybrid conductive network. ACS Appl. Mater. Interfaces 2020, 12, 42420–42429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jiang, W.; Li, X.; Gao, X. Highly stretchable and sensitive strain sensors based on modified PDMS and hybrid particles of AgNWs/graphene. Nanotechnology 2022, 34, 06LT01. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.; Li, Y.; Zhao, Y.; Wang, W.; Li, S.; Huang, L. Flexible piezoresistive sensor with the microarray structure based on selfassembly of multi-walled carbon nanotubes. Sensors 2019, 19, 4985. [Google Scholar] [CrossRef]
- He, Y.; Wu, D.; Zhou, M.; Zheng, Y.; Wang, T.; Lu, C.; Zhang, L.; Liu, H.; Liu, C. Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene. ACS Appl. Mater. Interfaces 2021, 13, 15572–15583. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lu, X.; Wu, D.; Zhou, M.; He, G.; Zhang, J.; Zhang, L.; Liu, H.; Liu, C. CNT/PDMS conductive foambased piezoresistive sensors with low detection limits, excellent durability, and multifunctional sensing capability. Sens. Actuators A Phys. 2023, 358, 114408. [Google Scholar] [CrossRef]
- Aikawa, S.; Zhao, Y.; Yan, J. Development of High-Sensitivity Electrically Conductive Composite Elements by Press Molding of Polymer and Carbon Nanofibers. Micromachines 2022, 13, 170. [Google Scholar] [CrossRef] [PubMed]
- Bi, P.; Zhang, M.; Li, S.; Lu, H.; Wang, H.; Liang, X.; Liang, H.; Zhang, Y. Ultra-sensitive and wide applicable strain sensor enabled by carbon nanofibers with dual alignment for human machine interfaces. Nano Res. 2023, 16, 4093–4099. [Google Scholar] [CrossRef]
- Lu, X.; Qin, Y.; Chen, X.; Peng, C.; Yang, Y.; Zeng, Y. An ultra-wide sensing range film strain sensor based on a branch-shaped PAN-based carbon nanofiber and carbon black synergistic conductive network for human motion detection and human–machine interfaces. J. Mater. Chem. C 2022, 10, 6296–6305. [Google Scholar] [CrossRef]
- Zha, A.-Y.; Zha, Q.-B.; Li, Z.; Zhang, H.-M.; Ma, X.-F.; Xie, W.; Zhu, M.-S. Surfactant-enhanced electrochemical detection of bisphenol A based on Au on ZnO/reduced graphene oxide sensor. Rare Met. 2023, 42, 1274–1282. [Google Scholar] [CrossRef]
- Wang, S.; Chen, F.; Li, Z.; Tao, H.; Qu, L.; Li, J.; Zhu, M.; Zha, Q. A graphene oxide/Zn-metal organic framework electrochemical sensor for acetaminophen detection. Surf. Interfaces 2023, 39, 102910. [Google Scholar] [CrossRef]
- You, X.; Yang, J.; Wang, M.; Hu, J.; Ding, Y.; Zhang, X.; Dong, S. Graphene-based fiber sensors with high stretchability and sensitivity by direct ink extrusion. 2D Mater. 2019, 7, 015025. [Google Scholar] [CrossRef]
- Luan, H.; Zhang, D.; Xu, Z.; Zhao, W.; Yang, C.; Chen, X. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. J. Mater. Chem. C 2022, 10, 7604–7613. [Google Scholar] [CrossRef]
- Chae, A.; Murali, G.; Lee, S.Y.; Gwak, J.; Kim, S.J.; Jeong, Y.J.; Kang, H.; Park, S.; Lee, A.S.; Koh, D.Y. Highly Oxidation-Resistant and Self-Healable MXene-Based Hydrogels for Wearable Strain Sensor (Adv. Funct. Mater. 24/2023). Adv. Funct. Mater. 2023, 33, 2370144. [Google Scholar] [CrossRef]
- Ni, Q.-Y.; He, X.-F.; Zhou, J.-L.; Yang, Y.-Q.; Zeng, Z.-F.; Mao, P.-F.; Luo, Y.-H.; Xu, J.-M.; Jiang, B.; Wu, Q. Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring. J. Mater. Sci. Technol. 2024, 191, 181–191. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Z.; He, P.; Shi, L.; Ding, G.; Wang, R.; Sun, J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy 2019, 66, 104134. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, X.; Li, Z.; Li, K.; Cheng, N.; Li, S.; Low, J.H.; Jing, L.; Fu, X.; Achavananthadith, S. Wireless Ti3C2T x MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020, 14, 11860–11875. [Google Scholar] [CrossRef] [PubMed]
- Nag, A.; Alahi, M.E.E.; Mukhopadhyay, S.C.; Liu, Z. Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 2021, 21, 1261. [Google Scholar] [CrossRef]
- Nie, M.; Ren, X.; Wen, L.; Han, L.; Wang, J.; Su, S. Highly sensitive and large range strain sensor based on synergetic effects with double conductive layer structures. Sens. Actuators A Phys. 2021, 318, 112515. [Google Scholar] [CrossRef]
- Xing, H.; Li, X.; Lu, Y.; Wu, Y.; He, Y.; Chen, Q.; Liu, Q.; Han, R.P. MXene/MWCNT electronic fabric with enhanced mechanical robustness on humidity sensing for real-time respiration monitoring. Sens. Actuators B Chem. 2022, 361, 131704. [Google Scholar] [CrossRef]
- Kalambate, P.K.; Dhanjai; Sinha, A.; Li, Y.; Shen, Y.; Huang, Y. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim. Acta 2020, 187, 402. [Google Scholar] [CrossRef]
- Chen, S.; Xu, J.; Shi, M.; Yu, Y.; Xu, Q.; Duan, X.; Gao, Y.; Lu, L. Polydopamine bridged MXene and NH2-MWCNTs nanohybrid for high-performance electrochemical sensing of Acetaminophen. Appl. Surf. Sci. 2021, 570, 151149. [Google Scholar] [CrossRef]
- Chachuli, S.A.M.; Hamidon, M.N.; Ertugrul, M.; Mamat, M.S.; Coban, O.; Tuzluca, F.N.; Yesilbag, Y.O.; Shamsudin, N. Effects of MWCNTs/graphene nanoflakes/MXene addition to TiO2 thick film on hydrogen gas sensing. J. Alloys Compd. 2021, 882, 160671. [Google Scholar] [CrossRef]
- Qiu, A.; Li, P.; Yang, Z.; Yao, Y.; Lee, I.; Ma, J. A path beyond metal and silicon: Polymer/nanomaterial composites for stretchable strain sensors. Adv. Funct. Mater. 2019, 29, 1806306. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Cui, H.; Liu, Y.; Zhu, J.; Wang, H.; Song, G.; Li, Z.; Chen, D. Strain sensor with high sensitivity and large response range based on self-assembled elastic-sliding conductive networks. ACS Appl. Electron. Mater. 2021, 3, 1758–1770. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Wang, H.; Wei, S.; Li, Z.; Liu, Y.; Chen, D.; Guo, Q.; Sun, X. Flexible assembled tactile sensor with freely integration design. Smart Mater. Struct. 2022, 31, 105013. [Google Scholar] [CrossRef]
- Chen, T.; Wang, J.; Wu, X.; Li, Z.; Yang, S. Ethanediamine induced self-assembly of long-range ordered GO/MXene composite aerogel and its piezoresistive sensing performances. Appl. Surf. Sci. 2021, 566, 150719. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; He, P.; Wang, S.; Ling, K.; Liu, L.; Lei, P.; Huang, X.; Zhao, H.; Cao, J. Wearable CNT/Ti3C2T x MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021, 14, 2875–2883. [Google Scholar] [CrossRef]
- Huang, K.; Ning, H.; Hu, N.; Liu, F.; Wu, X.; Wang, S.; Liu, Y.; Zou, R.; Yuan, W.; Wu, L. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Compos. Sci. Technol. 2020, 192, 108105. [Google Scholar] [CrossRef]
- Abshirini, M.; Charara, M.; Liu, Y.; Saha, M.; Altan, M.C. 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites. Adv. Eng. Mater. 2018, 20, 1800425. [Google Scholar] [CrossRef]
- Lu, S.; Ma, J.; Ma, K.; Wang, X.; Wang, S.; Yang, X.; Tang, H. Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending. Appl. Phys. A 2019, 125, 1–11. [Google Scholar] [CrossRef]
- Fu, X.; Ramos, M.; Al-Jumaily, A.M.; Meshkinzar, A.; Huang, X. Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. J. Mater. Sci. 2019, 54, 2170–2180. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Liu, Y.; Liu, L.; Xu, Q.; Liu, H.; Wang, W.; Chen, L. Ultra-stretchable monofilament flexible sensor with low hysteresis and linearity based on MWCNTs/Ecoflex composite materials. Macromol. Mater. Eng. 2021, 306, 2100113. [Google Scholar] [CrossRef]
- Li, T.; Li, J.; Zhong, A.; Han, F.; Sun, R.; Wong, C.-P.; Niu, F.; Zhang, G.; Jin, Y. A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection. Sens. Actuators A Phys. 2020, 306, 111959. [Google Scholar] [CrossRef]
- Yang, K.; Yin, F.; Xia, D.; Peng, H.; Yang, J.; Yuan, W. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale 2019, 11, 9949–9957. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shi, L.; Cao, Z.; Wang, R.; Sun, J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle–nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882. [Google Scholar] [CrossRef]
- Kedambaimoole, V.; Kumar, N.; Shirhatti, V.; Nuthalapati, S.; Sen, P.; Nayak, M.M.; Rajanna, K.; Kumar, S. Laser-induced direct patterning of free-standing Ti3C2–MXene films for skin conformal tattoo sensors. ACS Sens. 2020, 5, 2086–2095. [Google Scholar] [CrossRef] [PubMed]
- Chittibabu, S.K.; Chintagumpala, K. Evolution of 2D materials conducive to the wearable physical sensors for structural health assessment. Microelectron. Eng. 2023, 276, 112013. [Google Scholar] [CrossRef]
Composition | Gauge Factor | Response Range | Sensing Repeatability | Ref. |
---|---|---|---|---|
MWCNT/PDMS | 513 | 5% | 100 | [45] |
MWCNT/PDMS | 4.3 | 30% | 300 | [46] |
Graphene/MWCNT | 181.36 | 7.5% | 5000 | [47] |
MWCNT/PDMS | 9 | 40% | 1000 (10%) | [48] |
MWCNT/Ecoflex | 1300% | 6000 (100%) | [49] | |
CNTs/PDMS | 7.22 | 40% | 500 | [50] |
MXene/polyurethane | 228 | 150% | 3200 (10%) | [51] |
MXene/PDMS | 178 | 53% | 5000 (20%) | [52] |
MXene/PDMS | 7000 | 5% | 450 (0.5%) | [53] |
MXene/MWCNT/PDMS | 646 | 40% | 1800 (10%) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Yu, H.; Ma, X.; Lv, X.; Liu, Y.; Wang, H.; Wang, Z.; Chen, D. A Highly Sensitive Strain Sensor with Self-Assembled MXene/Multi-Walled Carbon Nanotube Sliding Networks for Gesture Recognition. Micromachines 2024, 15, 1301. https://doi.org/10.3390/mi15111301
Wang F, Yu H, Ma X, Lv X, Liu Y, Wang H, Wang Z, Chen D. A Highly Sensitive Strain Sensor with Self-Assembled MXene/Multi-Walled Carbon Nanotube Sliding Networks for Gesture Recognition. Micromachines. 2024; 15(11):1301. https://doi.org/10.3390/mi15111301
Chicago/Turabian StyleWang, Fei, Hongchen Yu, Xingyu Ma, Xue Lv, Yijian Liu, Hanning Wang, Zhicheng Wang, and Da Chen. 2024. "A Highly Sensitive Strain Sensor with Self-Assembled MXene/Multi-Walled Carbon Nanotube Sliding Networks for Gesture Recognition" Micromachines 15, no. 11: 1301. https://doi.org/10.3390/mi15111301
APA StyleWang, F., Yu, H., Ma, X., Lv, X., Liu, Y., Wang, H., Wang, Z., & Chen, D. (2024). A Highly Sensitive Strain Sensor with Self-Assembled MXene/Multi-Walled Carbon Nanotube Sliding Networks for Gesture Recognition. Micromachines, 15(11), 1301. https://doi.org/10.3390/mi15111301