Enhancement of Terahertz Emission by Silver Nanoparticles in a Liquid Medium
Abstract
1. Introduction
2. Materials and Methods
2.1. The Synthesis of Ag NP Suspensions
2.2. Characterizations of Ag NP Suspensions
2.3. Experimental Setup
3. Results
3.1. Quasispherical Ag NPs
3.2. Chain-Like Ag NPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andreeva, V.A.; Kosareva, O.G.; Panov, N.A.; Shipilo, D.E.; Solyankin, P.M.; Esaulkov, M.N.; González de Alaiza Martínez, P.; Shkurinov, A.P.; Makarov, V.A.; Bergé, L.; et al. Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma. Phys. Rev. Lett. 2016, 116, 063902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, W.; Wang, X.; Ye, J.; Feng, S.; Han, P.; Zhang, Y. Active stabilization of terahertz waveforms radiated from a two-color air plasma. Opt. Lett. 2017, 42, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Buccheri, F.; Zhang, X.C. Terahertz emission from laser-induced microplasma in ambient air. Optica 2015, 2, 366–369. [Google Scholar] [CrossRef]
- Ma, D.; Dong, L.; Zhang, M.; Wu, T.; Zhao, Y.; Zhang, L.; Zhang, C. Enhancement of terahertz waves from two-color laser-field induced air plasma excited using a third-color femtosecond laser. Opt. Express 2020, 28, 20598–20608. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Dong, L.; Zhang, R.; Zhang, C.; Zhao, Y.; Zhang, L. Enhancement of terahertz wave emission from air plasma excited by harmonic three-color laser fields. Opt. Commun. 2021, 481, 126533. [Google Scholar] [CrossRef]
- Jin, Q.; Yiwen, E.; Zhang, X.C. Terahertz aqueous photonics. Front. Optoelectron. 2021, 14, 37–63. [Google Scholar] [CrossRef] [PubMed]
- Ponomareva, E.A.; Stumpf, S.A.; Tcypkin, A.N.; Kozlov, S.A. Impact of laser-ionized liquid nonlinear characteristics on the efficiency of terahertz wave generation. Opt. Lett. 2019, 44, 5485–5488. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, Y.; Tian, Z.; Dai, J. Lateral terahertz wave emission from laser induced plasma in liquid water line. Appl. Phys. Lett. 2022, 120, 041101. [Google Scholar] [CrossRef]
- Zhang, L.L.; Wang, W.M.; Wu, T.; Feng, S.J.; Kang, K.; Zhang, C.L.; Zhang, X.C. Strong Terahertz Radiation from a Liquid-Water Line. Phys. Rev. Appl. 2019, 12, 014005. [Google Scholar] [CrossRef]
- Chen, Y.; He, Y.; Zhang, Y.; Tian, Z.; Dai, J. Systematic investigation of terahertz wave generation from liquid water lines. Opt. Express 2021, 29, 20477–20486. [Google Scholar] [CrossRef]
- Dey, I.; Jana, K.; Fedorov, V.Y.; Koulouklidis, A.D.; Mondal, A.; Shaikh, M.; Kumar, G.R. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids. Nat. Commun. 2017, 8, 1184. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Yiwen, E.; Williams, K.; Dai, J.; Zhang, X.C. Observation of broadband terahertz wave generation from liquid water. Appl. Phys. Lett. 2017, 111, 071103. [Google Scholar] [CrossRef]
- Jin, Q.; Dai, J.; Zhang, X.C. Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields. Appl. Phys. Lett. 2018, 113, 261101. [Google Scholar] [CrossRef]
- Ponomareva, E.A.; Tcypkin, A.N.; Smirnov, S.V.; Putilin, S.E.; Yiwen, E.; Kozlov, S.A.; Zhang, X.C. Double-pump technique—One step closer towards efficient liquid-based THz sources. Opt. Express 2019, 27, 32855–32862. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Zhang, X.C. Enhancement of terahertz emission by a preformed plasma in liquid water. Appl. Phys. Lett. 2019, 115, 101101. [Google Scholar]
- Sarpe, C.; Köhler, J.; Winkler, T.; Wollenhaupt, M.; Baumert, T. Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses. New J. Phys. 2012, 14, 075021. [Google Scholar] [CrossRef]
- Kim, K.Y.; Glownia, J.H.; Taylor, A.J.; Rodriguez, G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Opt. Express 2007, 15, 4577–4584. [Google Scholar] [CrossRef]
- Wang, H.Y.; Shen, T. Unified theoretical model for both one- and two-color laser excitation of terahertz waves from a liquid. Appl. Phys. Lett. 2020, 117, 131101. [Google Scholar] [CrossRef]
- Ismagilov, A.O.; Ponomareva, E.A.; Zhukova, M.O.; Putilin, S.E.; Nasedkin, B.A.; Tcypkin, A.N. Liquid jet-based broadband terahertz radiation source. Opt. Eng. 2021, 60, 082009. [Google Scholar] [CrossRef]
- Tcypkin, A.N.; Ponomareva, E.A.; Putilin, S.E.; Smirnov, S.V.; Shtumpf, S.A.; Melnik, M.V.; E, Y.; Kozlov, S.A.; Zhang, X.C. Flat liquid jet as a highly efficient source of terahertz radiation. Opt. Express 2019, 27, 15485–15494. [Google Scholar] [CrossRef]
- Cao, Y.; Ling, F.; Zhang, X.C. Flowing cryogenic liquid target for terahertz wave generation. AIP Adv. 2020, 10, 105119. [Google Scholar]
- Balakin, A.V.; Coutaz, J.L.; Makarov, V.A.; Kotelnikov, I.A.; Peng, Y.; Solyankin, P.M.; Zhu, Y.; Shkurinov, A.P. Terahertz Wave Generation from Liquid Nitrogen. Photonics Res. 2019, 7, 678–686. [Google Scholar] [CrossRef]
- Chen, Y.; He, Y.; Liu, L.; Tian, Z.; Dai, J. Scaling of the terahertz emission from liquid water lines by plasma reshaping. Opt. Lett. 2022, 47, 5969–5972. [Google Scholar] [CrossRef] [PubMed]
- E, Y.; Zhang, L.; Tcypkin, A.; Kozlov, S.; Zhang, C.; Zhang, X.-C. Broadband THz Sources from Gases to Liquids. Ultrafast Sci. 2021, 2021, 9892763. [Google Scholar] [CrossRef]
- E, Y.; Zhang, L.; Tcypkin, A.; Kozlov, S.; Zhang, C.; Zhang, X.-C. Progress, challenges, and opportunities of terahertz emission from liquids. J. Opt. Soc. Am. B 2022, 39, A43–A51. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, P.; Zhang, X.C. Broadband terahertz wave emission from liquid metal. Appl. Phys. Lett. 2020, 117, 041107. [Google Scholar] [CrossRef]
- Leemans, W.P.; Geddes, C.G.R.; Faure, J.; Tóth, C.; van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Fubiani, G.; Auerbach, D.; Marcelis, B.; et al. Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 2003, 91, 074802. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; Li, Y.; Zhang, Y.; Liu, H.; Ge, X.; Yang, S.; Wei, W.; Yuan, X.; Deng, Y.; Zhu, B.; et al. Demonstration of coherent terahertz transition radiation from relativistic laser-solid interactions. Phys. Rev. Lett. 2016, 116, 205003. [Google Scholar] [CrossRef]
- Solyankin, P.M.; Lakatosh, B.V.; Krivokorytov, M.S.; Tsygvintsev, I.P.; Sinko, A.S.; Kotelnikov, I.A.; Shkurinov, A.P. Single Free-Falling Droplet of Liquid Metal as a Source of Directional Terahertz Radiation. Phys. Rev. Appl. 2020, 14, 034033. [Google Scholar] [CrossRef]
- Durán, N.; Durán, M.; De Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 789–799. [Google Scholar]
- Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012, 2, 32. [Google Scholar] [CrossRef]
- Abdul Kareem, T.; Anu Kaliani, A. Synthesis and thermal study of octahedral silver nano-plates in polyvinyl alcohol (PVA). Arab. J. Chem. 2011, 4, 325–331. [Google Scholar] [CrossRef]
- Kyrychenko, A.; Pasko, D.A.; Kalugin, O.N. Poly (vinyl alcohol) as a water protecting agent for silver nanoparticles: The role of polymer size and structure. Phys. Chem. Chem. Phys. 2017, 19, 8742–8756. [Google Scholar] [PubMed]
- Navaladian, S.; Viswanathan, B.; Viswanath, R.P.; Varadarajan, T.K. Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett. 2006, 2, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.K.; Dai, J.; Zhang, W. Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt. Lett. 2006, 31, 634–636. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yang, L.; Zhu, Y.; Yang, D.Q.; Sacher, E. Destabilization of PVA-stabilized Ag NPs color changes at low aqueous concentrations induced by aggregation and coalescence. Mater. Res. Express 2020, 7, 025003. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Buccheri, F. Terahertz Photonics of Microplasma and beyond. Lith. J. Phys. 2018, 58, 1–14. [Google Scholar] [CrossRef][Green Version]
- Kim, K.Y.; Glownia, J.H.; Taylor, A.J.; Rodriguez, G. High-Power Broadband Terahertz Generation via Two-Color Photoionization in Gases. IEEE J. Quantum Electron. 2012, 48, 797–805. [Google Scholar] [CrossRef]
- Ageev, I.M.; Rybin, Y.M. Features of Measuring the Electrical Conductivity of Distilled Water in Contact with Air. Meas. Tech. 2020, 62, 923–927. [Google Scholar] [CrossRef]
- Bardeen, J. Electrical conductivity of metals. J. Appl. Phys. 1940, 11, 88–111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Shen, T.; Liu, J.; Zhu, Y.; Li, H.; Wang, T. Enhancement of Terahertz Emission by Silver Nanoparticles in a Liquid Medium. Micromachines 2023, 14, 1593. https://doi.org/10.3390/mi14081593
Wang H, Shen T, Liu J, Zhu Y, Li H, Wang T. Enhancement of Terahertz Emission by Silver Nanoparticles in a Liquid Medium. Micromachines. 2023; 14(8):1593. https://doi.org/10.3390/mi14081593
Chicago/Turabian StyleWang, Haoyang, Tao Shen, Jinkun Liu, Yan Zhu, Hong Li, and Tianwu Wang. 2023. "Enhancement of Terahertz Emission by Silver Nanoparticles in a Liquid Medium" Micromachines 14, no. 8: 1593. https://doi.org/10.3390/mi14081593
APA StyleWang, H., Shen, T., Liu, J., Zhu, Y., Li, H., & Wang, T. (2023). Enhancement of Terahertz Emission by Silver Nanoparticles in a Liquid Medium. Micromachines, 14(8), 1593. https://doi.org/10.3390/mi14081593