How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications?
Abstract
:1. Introduction
2. Why Fiber Supercapacitor?
3. Electrochemical Performance
Device Architecture | Volumetric Energy Density (mWh cm−3) | Volumetric Power Density (mW cm−3) | % Capacitance Retention after Bending | % Capacitance Retention after Cycle (Cycle Life) | Refs. |
---|---|---|---|---|---|
Parallel | 8.3 | 3 × 103 | 89.9% (1 K Bendings) | 71.4% (10 K Cycle) | [33] |
Parallel | 7.13 | 8249 | ~97% (200 Bendings) | 95% (10 K Cycle) | [72] |
Parallel | 24 × 10−3 | 3.25 | 99% (100 Bendings) | 69% (10 K Cycle) | [53] |
Parallel | 8.8 | 30.77 | - | 86% (17 K Cycle) | [52] |
Parallel | 1.55 | 12 | 95% (20 Bendings) | - | [73] |
Parallel | 6.6 | 320 | - | 89% (5 K Cycle) | [74] |
Parallel | 2.63 | 120 | - | 88.1% (15 K Cycle) | [75] |
Parallel | 0.12 | 5.4 | 92% (3 K Bendings) | 90.7% (5 K Cycle) | [76] |
Parallel | 4.02 | 200 | - | 90% (3 K Cycle) | [77] |
Parallel | 0.011 | 7.8 | - | 100% (1.4 K Cycle) | [56] |
Parallel | 24 × 10−3 | 9.07 | - | 100% (15 K Cycle) | [55] |
Parallel | 3.7 | 3840 | - | 98.5% (10 K Cycle) | [78] |
Parallel | 0.22 | 400 | - | 84% (10 K Cycle) | [79] |
Parallel | 6.16 | 40 | - | 86.7% (1 K Cycle) | [80] |
Parallel | 6.3 | 1085 | ~97% (1 K Bendings) | 93% (10 K Cycle) | [81] |
Parallel | 2.55 | 1.82 × 103 | 98% (1 K Bendings) | 99% (1.6 K Cycle) | [82] |
Parallel | 2.29 | 1.64 × 103 | ~100% (5 K Bendings) | 71.9% (3 K Cycle) | [83] |
Parallel | 5.8 | 0.51 × 103 | - | - | [84] |
Coaxial | 0.088 | 9 | 96.8% (5 K Bendings) | 88.4% (6 K Cycle) | [85] |
Coaxial | 84.2 | 73.8 | 99% (1 K Bendings) | 82% (10 K Cycle) | [60] |
Coaxial | 11.8 | 0.1 × 103 | 90% (1 K Bendings) | 80% (1 K Cycle) | [61] |
Coaxial | 61.6 | 5.4 × 103 | - | 85% (10 K Cycle) | [86] |
Coaxial | 3.84 | 0.018 × 103 | 98% (200 Bendings) | ~90% (2 K Cycle) | [87] |
Twisted | 0.47 | 10.18 | 80% (1 K Bendings) | - | [88] |
Twisted | 2 | 5 | - | 84% (5 K Cycle) | [89] |
Twisted | 11.3 | 2100 | ~100% (5 K Bendings) | 85% (10 K Cycle) | [90] |
Twisted | 1.4 | 40 × 103 | 98% (2 K Bendings) | 94% (10 K Cycle) | [91] |
Twisted | 0.17 × 10−3 | 0.1 | - | 92% (500 Cycle) | [92] |
Twisted | 0.601 | 1320 | - | - | [93] |
Twisted | 0.84 | 19.1 | 80% (1 K Bendings) | 100% (1 K Cycle) | [54] |
Twisted | 3 | 0.55 × 103 | 95% (1 K Bendings) | 92% (10 K Cycle) | [94] |
Twisted | 36.4 × 10−3 | 15.6 | - | 90% (800 Cycle) | [95] |
Twisted | 0.22 × 10−3 | 1.32 × 103 | - | - | [96] |
Twisted | 6.6 | 320 | ~100% (2 K Bendings) | 93% (5 K Cycle) | [34] |
Twisted | 5.7 | 14.5 | ~100% (5 K Bendings) | 96.2% (5 K Cycle) | [97] |
Twisted | 5.7 | 167.7 | - | ~97% (5 K Cycle) | [97] |
Woven | 9.56 | 2.91 × 103 | ~100% (1 K Bendings) | ~100% (10 K Cycle) | [98] |
Woven | 0.263 | 47 | - | 85% (1 K Cycle) | [99] |
Woven | 0.14 | 4.68 | ~100% (1 K Bendings) | 82% (1 K Cycle) | [62] |
Woven | 5.1 | 1700 | - | ~100% (20 K Cycle) | [100] |
Woven | 43 × 10−3 | 5 | - | 76% (3 K Cycle) | [101] |
Woven | 30 × 10−3 | 3.8 | - | - | [101] |
Woven | 0.094 | 66.2 | - | ~105% (15 K Cycle) | [102] |
Woven | 3.6 | - | ~100% (1 K Bendings) | 80% (10 K Cycle) | [32] |
Woven | 0.04 | 20 | - | ~97% (30 K Cycle) | [35] |
Woven | 37.8 | 2678 | - | ~98% (5 K Cycle) | [63] |
Woven | 0.045 | 1 | 95% (20 K Bendings) | 97% (20 K Cycle) | [103] |
Woven | 2.5 | 5 | 96.8% (1 K Bendings) | 90.4% (10 K Cycle) | [104] |
Woven | 12.9 | 80 | 97.1% (1 K Bendings) | - | [105] |
4. Mechanical Performance
5. Summary and Outlook
- Scalable Manufacturing: Ensuring scalability and cost-effectiveness in manufacturing processes is challenging. Current methods are often intricate and time-consuming, hindering scalability. Identifying efficient techniques that can be seamlessly incorporated into large-scale production is vital for commercial viability.
- Integration and Connectivity: The integration and connectivity of individual fibers within the supercapacitor structure pose critical challenges. Arranging and interconnecting the fibers to maximize electrode area and minimize electrical resistance is imperative. Maintaining consistent and reliable electrical connections between fibers is vital for sustained device performance.
- Long-Term Stability: Ensuring the long-term stability and reliability of flexible fiber supercapacitors in diverse environmental conditions is another challenge. Temperature, humidity, and chemical exposure can impact device performance and lifespan. Developing protective coatings or encapsulation strategies is necessary to enhance environmental stability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Libanori, A.; Chen, G.; Zhao, X.; Zhou, Y.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156. [Google Scholar] [CrossRef]
- Madhushani, K.A.U.; Gupta, R. Smart-Fabric-Based Supercapacitor with Long-Term Durability and Waterproof Properties toward Wearable Applications. ACS Appl. Mater. Interfaces 2021, 13, 14778–14785. [Google Scholar]
- Zhang, P.; Deng, B.; Sun, W.; Zheng, Z.; Liu, W. Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics. Micromachines 2021, 12, 869. [Google Scholar] [CrossRef] [PubMed]
- Bedell, S.W.; Shahrjerdi, D.; Fogel, K.; Lauro, P.; Bayram, C.; Hekmatshoar, B.; Li, N.; Ott, J.; Sadana, D. Advanced flexible electronics: Challenges and opportunities. In Micro- and Nanotechnology Sensors, Systems, and Applications VI; SPIE: Baltimore, MD, USA, 2014; Volume 9083, pp. 280–288. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Z.; Lin, Y. Flexible energy storage devices for wearable bioelectronics. J. Semicond. 2021, 42, 101602. [Google Scholar] [CrossRef]
- Wenqi, G.U.O.; Healy, W.M. Power Supply Issues in Battery Reliant Wireless Sensor Networks: A Review. Int. J. Intell. Control. Syst. 2014, 19, 15–23. [Google Scholar]
- Mo, F.; Liang, G.; Huang, Z.; Li, H.; Wang, D.; Zhi, C. An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Adv. Mater. 2020, 32, 1902151. [Google Scholar] [CrossRef]
- Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262. [Google Scholar] [CrossRef]
- Park, Y.J.; Kim, M.K.; Kim, H.S.; Lee, B.M. Risk assessment of lithium-ion battery explosion: Chemical leakages. J. Toxicol. Environ. Health Part B 2018, 21, 370–381. [Google Scholar] [CrossRef]
- Cha, H.; Kim, J.; Lee, Y.; Cho, J.; Park, M. Issues and Challenges Facing Flexible Lithium-Ion Batteries for Practical Application. Small 2018, 14, e1702989. [Google Scholar] [CrossRef]
- Li, L.; Wu, Z.; Yuan, S.; Zhang, X.-B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101–2122. [Google Scholar] [CrossRef]
- Gulzar, U.; Goriparti, S.; Miele, E.; Li, T.; Maidecchi, G.; Toma, A.; De Angelis, F.; Capiglia, C.; Zaccaria, R.P. Next-generation textiles: From embedded supercapacitors to lithium ion batteries. J. Mater. Chem. A 2016, 4, 16771–16800. [Google Scholar] [CrossRef]
- Gopi, C.V.M.; Vinodh, R.; Sambasivam, S.; Obaidat, I.M.; Kim, H.-J. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications. J. Energy Storage 2020, 27, 101035. [Google Scholar] [CrossRef]
- Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X.M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014, 26, 5310–5336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, C.; Yang, F.; Yu, J.; Dong, H.; Sui, J.; Chen, Y.; Yu, L.; Dong, L. High performance fiber-shaped flexible asymmetric supercapacitor based on MnO2 nanostructure composited with CuO nanowires and carbon nanotubes. Ceram. Int. 2022, 48, 13996–14003. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.-H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Shen, G. Recent Advances in Smart Wearable Sensing Systems. Adv. Mater. Technol. 2018, 3, 1800444. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.S.; Sun, P.; Imran, M.; Mai, W. Flexible Fiber-shaped Supercapacitors: Fabrication, Design and Applications. In Flexible Supercapacitors: Materials and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 91–120. [Google Scholar]
- Zhou, Z.; Li, P.; Man, Z.; Zhu, X.; Ye, S.; Lu, W.; Wu, G.; Chen, W. Multiscale Dot-Wire-Sheet Heterostructured Nitrogen-Doped Carbon Dots-Ti3C2Tx/Silk Nanofibers for High-Performance Fiber-Shaped Supercapacitors. Angew. Chem. Int. Ed. 2023, 62, e202301618. [Google Scholar] [CrossRef]
- Li, M.; Xu, B.; Zheng, L.; Zhou, J.; Luo, Z.; Li, W.; Ma, W.; Mao, Q.; Xiang, H.; Zhu, M. Highly stable polyaniline array@partially reduced graphene oxide hybrid fiber for high-performance flexible supercapacitors. Carbon 2023, 203, 455–461. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, D.; Zheng, Z. Textile-Based Electrochemical Energy Storage Devices. Adv. Energy Mater. 2016, 6, 1600783. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, D.; Shen, C.; Chen, M.; Long, S.; Huang, Y. Tough, flexible, and durable all-polyampholyte hydrogel supercapacitor. Polym. Test. 2022, 115, 107720. [Google Scholar] [CrossRef]
- Deka, B.K.; Hazarika, A.; Kang, G.-H.; Hwang, Y.J.; Jaiswal, A.P.; Kim, D.C.; Park, Y.-B.; Park, H.W. 3D-Printed Structural Supercapacitor with MXene-N@Zn-Co Selenide Nanowire Based Woven Carbon Fiber Electrodes. ACS Energy Lett. 2023, 8, 963–971. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Zhao, J.; Li, Y. Electrostatic Interfacial Cross-Linking and Structurally Oriented Fiber Constructed by Surface-Modified 2D MXene for High-Performance Flexible Pseudocapacitive Storage. ACS Nano 2023, 17, 2487–2496. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Yang, D.; Hao, S.-M.; Xu, T.; Zhang, M.; Zhou, W.; Yu, Z.-Z. Optimized electron/ion transport by constructing radially oriented channels in MXene hybrid fiber electrodes for high-performance supercapacitors at low temperatures. J. Mater. Chem. A 2023, 11, 1742–1755. [Google Scholar] [CrossRef]
- Qin, H.; Liu, P.; Chen, C.; Cong, H.-P.; Yu, S.-H. A multi-responsive healable supercapacitor. Nat. Commun. 2021, 12, 4297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Lin, Z.; Yu, M.; Lu, X.; Tong, Y. Recent advances and challenges of stretchable supercapacitors based on carbon materials. Sci. China Mater. 2016, 59, 475–494. [Google Scholar] [CrossRef]
- Kang, M.S.; Heo, I.; Cho, K.G.; Kyung, H.; Kim, H.S.; Lee, K.H.; Yoo, W.C. Coarsening-induced hierarchically interconnected porous carbon polyhedrons for stretchable ionogel-based supercapacitors. Energy Storage Mater. 2022, 45, 380–388. [Google Scholar] [CrossRef]
- Liu, W.; Song, M.-S.; Kong, B.; Cui, Y. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Adv. Mater. 2017, 29, 1603436. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Pan, Z.; Sun, J.; Zhao, J.; Zhang, J.; Zhang, C.; Tang, L.; Luo, J.; Song, B.; et al. Wrapping Aligned Carbon Nanotube Composite Sheets around Vanadium Nitride Nanowire Arrays for Asymmetric Coaxial Fiber-Shaped Supercapacitors with Ultrahigh Energy Density. Nano Lett. 2017, 17, 2719–2726. [Google Scholar] [CrossRef]
- Ostfeld, A.E.; Gaikwad, A.M.; Khan, Y.; Arias, A.C. High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 2016, 6, 26122. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Xie, Y.; Zhu, B.; Sanghadasa, M.; Tang, Y.; Lin, L. Wearable woven supercapacitor fabrics with high energy density and load-bearing capability. Sci. Rep. 2017, 7, 14324. [Google Scholar] [CrossRef] [Green Version]
- Teng, W.; Zhou, Q.; Wang, X.; Che, H.; Hu, P.; Li, H.; Wang, J. Hierarchically interconnected conducting polymer hybrid fiber with high specific capacitance for flexible fiber-shaped supercapacitor. Chem. Eng. J. 2020, 390, 124569. [Google Scholar] [CrossRef]
- Yuan, D.; Li, B.; Cheng, J.; Guan, Q.; Wang, Z.; Ni, W.; Li, C.; Liu, H.; Wang, B. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation. J. Mater. Chem. A 2016, 4, 11616–11624. [Google Scholar] [CrossRef]
- Van Lam, D.; Jo, K.; Kim, C.-H.; Won, S.; Hwangbo, Y.; Kim, J.-H.; Lee, H.-J.; Lee, S.-M. Calligraphic ink enabling washable conductive textile electrodes for supercapacitors. J. Mater. Chem. A 2016, 4, 4082–4088. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef]
- Jost, K.; Dion, G.; Gogotsi, Y. Textile energy storage in perspective. J. Mater. Chem. A 2014, 2, 10776–10787. [Google Scholar] [CrossRef]
- Zhai, S.; Karahan, H.E.; Wei, L.; Qian, Q.; Harris, A.T.; Minett, A.I.; Ramakrishna, S.; Ng, A.K.; Chen, Y. Textile energy storage: Structural design concepts, material selection and future perspectives. Energy Storage Mater. 2016, 3, 123–139. [Google Scholar] [CrossRef]
- Wen, L.; Li, F.; Cheng, H.-M. Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: From Materials to Devices. Adv. Mater. 2016, 28, 4306–4337. [Google Scholar] [CrossRef]
- Anjum, N.; Grota, M.; Li, D.; Shen, C. Laminate composite-based highly durable and flexible supercapacitors for wearable energy storage. J. Energy Storage 2020, 29, 101460. [Google Scholar] [CrossRef]
- Dong, L.; Xu, C.; Li, Y.; Huang, Z.-H.; Kang, F.; Yang, Q.-H.; Zhao, X. Flexible electrodes and supercapacitors for wearable energy storage: A review by category. J. Mater. Chem. A 2016, 4, 4659–4685. [Google Scholar] [CrossRef]
- Sumboja, A.; Liu, J.; Zheng, W.G.; Zong, Y.; Zhang, H.; Liu, Z. Electrochemical energy storage devices for wearable technology: A rationale for materials selection and cell design. Chem. Soc. Rev. 2018, 47, 5919–5945. [Google Scholar] [CrossRef]
- Yu, X.; Fu, Y.; Cai, X.; Kafafy, H.; Wu, H.; Peng, M.; Hou, S.; Lv, Z.; Ye, S.; Zou, D. Flexible fiber-type zinc–carbon battery based on carbon fiber electrodes. Nano Energy 2013, 2, 1242–1248. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Wang, Y.; Huang, H. Advances and prospects of fiber supercapacitors. J. Mater. Chem. A 2015, 3, 20863–20879. [Google Scholar] [CrossRef]
- Gao, M.; Wang, P.; Jiang, L.; Wang, B.; Yao, Y.; Liu, S.; Chu, D.; Cheng, W.; Lu, Y. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114–2157. [Google Scholar] [CrossRef]
- Fan, X.; Liu, B.; Ding, J.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Flexible and Wearable Power Sources for Next-Generation Wearable Electronics. Batter. Supercaps 2020, 3, 1262–1274. [Google Scholar] [CrossRef]
- Senthilkumar, S.T.; Selvan, R.K. Fabrication and performance studies of a cable-type flexible asymmetric supercapacitor. Phys. Chem. Chem. Phys. 2014, 16, 15692–15698. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Wang, D.; Hu, H.; Shang, J.; Chang, J.; Xie, C.; Yang, Y.; Lepró, X.; Baughman, R.H.; Zheng, Z. Additive functionalization and embroidery for manufacturing wearable and washable textile supercapacitors. Adv. Funct. Mater. 2020, 30, 1910541. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, K.; Lv, C.; Zhong, S.; Wang, Q.; Liu, T.; Liu, X.; Yin, Y.; Hu, Y.; Wei, D.; et al. Ultrahigh-Energy Density Lithium-Ion Cable Battery Based on the Carbon-Nanotube Woven Macrofilms. Small 2018, 14, e1800414. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, X.; Liu, T.; Zhang, X. Flexible 1D Batteries: Recent Progress and Prospects. Adv. Mater. 2020, 32, e1901961. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, J.; Lin, H.; Huang, W. Flexible fiber and fabric batteries. Adv. Mater. Technol. 2018, 3, 1700302. [Google Scholar] [CrossRef]
- Li, P.; Jin, Z.; Peng, L.; Zhao, F.; Xiao, D.; Jin, Y.; Yu, G. Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. Adv. Mater. 2018, 30, e1800124. [Google Scholar] [CrossRef]
- Song, C.; Yun, J.; Keum, K.; Jeong, Y.R.; Park, H.; Lee, H.; Lee, G.; Oh, S.Y.; Ha, J.S. High performance wire-type supercapacitor with Ppy/CNT-ionic liquid/AuNP/carbon fiber electrode and ionic liquid based electrolyte. Carbon 2019, 144, 639–648. [Google Scholar] [CrossRef]
- Lu, X.; Bai, Y.; Wang, R.; Sun, J. A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. J. Mater. Chem. A 2016, 4, 18164–18173. [Google Scholar] [CrossRef]
- Fu, Y.; Cai, X.; Wu, H.; Lv, Z.; Hou, S.; Peng, M.; Yu, X.; Zou, D. Fiber Supercapacitors Utilizing Pen Ink for Flexible/Wearable Energy Storage. Adv. Mater. 2012, 24, 5713–5718. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, H.; Li, M.; Zhang, L.; Huang, Y.; Hu, X. Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 1774–1779. [Google Scholar] [CrossRef]
- Le, V.T.; Kim, H.; Ghosh, A.; Kim, J.; Chang, J.; Vu, Q.A.; Pham, D.T.; Lee, J.-H.; Kim, S.-W.; Lee, Y.H. Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes. ACS Nano 2013, 7, 5940–5947. [Google Scholar] [CrossRef]
- Chen, X.; Qiu, L.; Ren, J.; Guan, G.; Lin, H.; Zhang, Z.; Chen, P.; Wang, Y.; Peng, H. Novel Electric Double-Layer Capacitor with a Coaxial Fiber Structure. Adv. Mater. 2013, 25, 6436–6441. [Google Scholar] [CrossRef]
- Shen, C.; Xie, Y.; Sanghadasa, M.; Tang, Y.; Lu, L.; Lin, L. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities. ACS Appl. Mater. Interfaces 2017, 9, 39391–39398. [Google Scholar] [CrossRef]
- Wu, X.; Meng, L.; Wang, Q.; Zhang, W.; Wang, Y. A self-healable asymmetric fibered-supercapacitor integrated in self-supported inorganic nanosheets array and conducting polymer electrodes. Chem. Eng. J. 2018, 352, 423–430. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, C.; Lee, J.M.; de Andrade, M.J.; Baughman, R.H.; Kim, S.J. Ag/MnO2 Composite Sheath-Core Structured Yarn Supercapacitors. Sci. Rep. 2018, 8, 13309. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.; Kim, K.M.; Kim, K.J.; Lepró, X.; Spinks, G.M.; Baughman, R.H.; Kim, S.J. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat Commun. 2016, 7, 13811. [Google Scholar] [CrossRef] [Green Version]
- Sundriyal, P.; Bhattacharya, S. Textile-based supercapacitors for flexible and wearable electronic applications. Sci. Rep. 2020, 10, 13259. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.-S.; Chen, K.-H. A Low-Power Broad-Bandwidth Noise Cancellation VLSI Circuit Design for In-Ear Headphones. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2015, 24, 2013–2025. [Google Scholar] [CrossRef]
- Gokalgandhi, D.; Kamdar, L.; Shah, N.; Mehendale, N. A Review of Smart Technologies Embedded in Shoes. J. Med. Syst. 2020, 44, 150. [Google Scholar] [CrossRef] [PubMed]
- Nirjon, S.; Gummeson, J.; Gelb, D.; Kim, K.-H. Typingring: A wearable ring platform for text input. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18–22 May 2015; pp. 227–239. [Google Scholar]
- LiKamWa, R.; Wang, Z.; Carroll, A.; Lin, F.X.; Zhong, L. Draining our glass: An energy and heat characterization of google glass. In Proceedings of the 5th Asia-Pacific Workshop on Systems, Beijing China, 25–26 June 2014; pp. 1–7. [Google Scholar]
- Liu, X.; Chen, T.; Qian, F.; Guo, Z.; Lin, F.X.; Wang, X.; Chen, K. Characterizing smartwatch usage in the wild. In Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, Niagara Falls, NY, USA, 19–23 June 2017; pp. 385–398. [Google Scholar]
- Zhao, J.; Ghannam, R.; Htet, K.O.; Liu, Y.; Law, M.-K.; Roy, V.A.L.; Michel, B.; Imran, M.A.; Heidari, H. Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review. Adv. Healthc. Mater. 2020, 9, 2000779. [Google Scholar] [CrossRef] [PubMed]
- Magno, M.; Benini, L.; Spagnol, C.; Popovici, E. Wearable low power dry surface wireless sensor node for healthcare monitoring application. In Proceedings of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Lyon, France, 7–9 October 2013; pp. 189–195. [Google Scholar] [CrossRef]
- Liu, K.; Yu, C.; Guo, W.; Ni, L.; Yu, J.; Xie, Y.; Wang, Z.; Ren, Y.; Qiu, J. Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. J. Energy Chem. 2021, 58, 94–109. [Google Scholar] [CrossRef]
- Zhang, J.; Seyedin, S.; Qin, S.; Wang, Z.; Moradi, S.; Yang, F.; Lynch, P.A.; Yang, W.; Liu, J.; Wang, X. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors. Small 2019, 15, 1804732. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Yang, K.; Fan, X.; Tong, Y.; Zhang, Z.; Lu, X.; Mai, K.; Ni, Q.; Zhang, M.; et al. Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes. J. Mater. Chem. A 2018, 6, 12250–12258. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, J.; Guan, Q.; Huang, H.; Li, Y.; Zhou, J.; Ni, W.; Wang, B.; He, S.; Peng, H. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 2018, 45, 210–219. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, Y.; Liang, X.; Zhang, D.; Miao, M. Novel core/shell CoSe2@PPy nanoflowers for high-performance fiber asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 10361–10369. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, J.; Pan, Z.; Zhang, J.; Zhao, J.; Wang, X.; Zhang, C.; Yao, Y.; Lu, W.; Li, Q.; et al. Stretchable fiber-shaped asymmetric supercapacitors with ultrahigh energy density. Nano Energy 2017, 39, 219–228. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Fu, C.; Huang, Y.; Zhu, M.; Tao, X.; Zhi, C.; Hu, H. A high performance fiber-shaped PEDOT@ MnO2//C@ Fe3O4 asymmetric supercapacitor for wearable electronics. J. Mater. Chem. A Mater. 2016, 4, 14877–14883. [Google Scholar] [CrossRef]
- Meng, Q.; Wu, H.; Meng, Y.; Xie, K.; Wei, Z.; Guo, Z. High-Performance All-Carbon Yarn Micro-Supercapacitor for an Integrated Energy System. Adv. Mater. 2014, 26, 4100–4106. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Li, T.; Yang, P.; Gao, Y.; Jin, H.; Ni, W.; Zhan, W.; Zhang, X.; Cao, Y.; Zhong, J.; et al. Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano 2012, 6, 9200–9206. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Liu, N.; Ma, W.; Ding, L.; Li, L.; Su, J.; Gao, Y. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Rep. 2013, 3, 2286. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat. Nanotechnol. 2014, 15, 555–562. [Google Scholar] [CrossRef]
- Yu, C.; Gong, Y.; Chen, R.; Zhang, M.; Zhou, J.; An, J.; Lv, F.; Guo, S.; Sun, G. A Solid-State Fibriform Supercapacitor Boosted by Host-Guest Hybridization between the Carbon Nanotube Scaffold and MXene Nanosheets. Small 2018, 14, e1801203. [Google Scholar] [CrossRef]
- Shi, P.; Chen, R.; Li, L.; An, J.; Hua, L.; Zhou, J.; Liu, B.; Chen, P.; Huang, W.; Sun, G. Holey nickel hydroxide nanosheets for wearable solid-state fiber-supercapacitors. Nanoscale 2018, 10, 5442–5448. [Google Scholar] [CrossRef]
- Ma, W.; Chen, S.; Yang, S.; Chen, W.; Cheng, Y.; Guo, Y.; Peng, S.; Ramakrishna, S.; Zhu, M. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J. Power Sources 2016, 306, 481–488. [Google Scholar] [CrossRef]
- Zhao, J.; Li, L.; Zhang, Y.; Li, C.; Zhang, Q.; Peng, J.; Zhao, X.; Li, Q.; Wang, X.; Xie, J.; et al. Novel coaxial fiber-shaped sensing system integrated with an asymmetric supercapacitor and a humidity sensor. Energy Storage Mater. 2018, 15, 315–323. [Google Scholar] [CrossRef]
- Wang, Z.; Qin, S.; Seyedin, S.; Zhang, J.; Wang, J.; Levitt, A.; Li, N.; Haines, C.; Ovalle-Robles, R.; Lei, W.; et al. High-Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small 2018, 14, e1802225. [Google Scholar] [CrossRef]
- Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 2014, 5, 3754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Fu, C.; Wang, Z.; Huang, Y.; Zhu, M.; Zhi, C.; Hu, H. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 2016, 27, 230–237. [Google Scholar] [CrossRef]
- Gong, X.; Li, S.; Lee, P.S. A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale 2017, 9, 10794–10801. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhang, J.; Ren, J.; Liu, N.; Chen, P.; Zhang, Y.; Deng, J.; Wang, Y.; Peng, H. Design of a Hierarchical Ternary Hybrid for a Fiber-Shaped Asymmetric Supercapacitor with High Volumetric Energy Density. J. Phys. Chem. C 2016, 120, 9685–9691. [Google Scholar] [CrossRef]
- Lee, J.A.; Shin, M.K.; Kim, S.H.; Cho, H.U.; Spinks, G.M.; Wallace, G.G.; Lima, M.D.; Lepró, X.; Kozlov, M.E.; Baughman, R.H.; et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 2013, 4, 1970. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Shi, G.; Qu, L. All-Graphene Core-Sheath Microfibers for All-Solid-State, Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles. Adv. Mater. 2013, 25, 2326–2331. [Google Scholar] [CrossRef]
- Xu, P.; Gu, T.; Cao, Z.; Wei, B.; Yu, J.; Li, F.; Byun, J.-H.; Lu, W.; Li, Q.; Chou, T.-W. Carbon Nanotube Fiber Based Stretchable Wire-Shaped Supercapacitors. Adv. Energy Mater. 2014, 4, 1300759. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Zhao, Y.; Fang, X.; Ren, J.; Weng, W.; Jiang, Y.; Sun, H.; Wang, B.; Cheng, X.; et al. Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. J. Mater. Chem. A 2015, 3, 17553–17557. [Google Scholar] [CrossRef]
- Wang, K.; Meng, Q.; Zhang, Y.; Wei, Z.; Miao, M. High-Performance Two-Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays. Adv. Mater. 2013, 25, 1494–1498. [Google Scholar] [CrossRef]
- Yu, D.; Qian, Q.; Wei, L.; Jiang, W.; Goh, K.; Wei, J.; Zhang, J.; Chen, Y. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647–662. [Google Scholar] [CrossRef]
- Zheng, X.; Yao, L.; Qiu, Y.; Wang, S.; Zhang, K. Core–Sheath Porous Polyaniline Nanorods/Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Appl. Energy Mater. 2019, 2, 4335–4344. [Google Scholar] [CrossRef]
- Cheng, X.; Fang, X.; Chen, P.; Doo, S.-G.; Son, I.H.; Huang, X.; Zhang, Y.; Weng, W.; Zhang, Z.; Deng, J.; et al. Designing one-dimensional supercapacitors in a strip shape for high performance energy storage fabrics. J. Mater. Chem. A 2015, 3, 19304–19309. [Google Scholar] [CrossRef]
- Javaid, A.; Zafrullah, M.B.; Khan, F.U.H.; Bhatti, G.M. Improving the multifunctionality of structural supercapacitors by interleaving graphene nanoplatelets between carbon fibers and solid polymer electrolyte. J. Compos. Mater. 2019, 53, 1401–1409. [Google Scholar] [CrossRef]
- Seyedin, S.; Yanza, E.R.S.; Razal, J.M. Knittable energy storing fiber with high volumetric performance made from predominantly MXene nanosheets. J. Mater. Chem. A 2017, 5, 24076–24082. [Google Scholar] [CrossRef]
- Choi, C.; Park, J.W.; Kim, K.J.; Lee, D.W.; de Andrade, M.J.; Kim, S.H.; Gambhir, S.; Spinks, G.M.; Baughman, R.H.; Kim, S.J. Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC Adv. 2018, 8, 13112–13120. [Google Scholar] [CrossRef] [Green Version]
- Yong, S.; Owen, J.; Beeby, S. Solid-State Supercapacitor Fabricated in a Single Woven Textile Layer for E-Textiles Applications. Adv. Eng. Mater. 2018, 20, 1700860. [Google Scholar] [CrossRef]
- Wang, G.; Wang, H.; Lu, X.; Ling, Y.; Yu, M.; Zhai, T.; Tong, Y.; Li, Y. Solid-State Supercapacitor Based on Activated Carbon Cloths Exhibits Excellent Rate Capability. Adv. Mater. 2014, 26, 2676–2682. [Google Scholar] [CrossRef]
- Ma, W.; Chen, S.; Yang, S.; Chen, W.; Weng, W.; Zhu, M. Bottom-Up Fabrication of Activated Carbon Fiber for All-Solid-State Supercapacitor with Excellent Electrochemical Performance. ACS Appl. Mater. Interfaces 2016, 8, 14622–14627. [Google Scholar] [CrossRef]
- Zhai, H.; Xu, L.; Liu, Z.; Jin, L.; Yi, Y.; Zhang, J.; Fan, Y.; Cheng, D.; Li, J.; Liu, X.; et al. Twisted graphene fibre based breathable, wettable and washable anti-jamming strain sensor for underwater motion sensing. Chem. Eng. J. 2022, 439, 135502. [Google Scholar] [CrossRef]
- Shin, D.; Shen, C.; Sanghadasa, M.; Lin, L. Breathable 3D Supercapacitors Based on Activated Carbon Fiber Veil. Adv. Mater. Technol. 2018, 3, 1800209. [Google Scholar] [CrossRef]
- Zang, X.; Shen, C.; Chu, Y.; Li, B.; Wei, M.; Zhong, J.; Sanghadasa, M.; Lin, L. Laser-Induced Molybdenum Carbide-Graphene Composites for 3D Foldable Paper Electronics. Adv. Mater. 2018, 30, e1800062. [Google Scholar] [CrossRef]
- Peirce, F.T. 26—The “Handle” of cloth as a measurable quantity. J. Text. Inst. Trans. 2008, 21, T377–T416. [Google Scholar] [CrossRef]
- Standard Test Method for Stiffness of Fabrics. n.d. Available online: https://www.astm.org/d1388-18.html (accessed on 25 December 2022).
- Xu, F.; Dong, S.; Liu, G.; Pan, C.; Guo, Z.H.; Guo, W.; Li, L.; Liu, Y.; Zhang, C.; Pu, X.; et al. Scalable fabrication of stretchable and washable textile triboelectric nanogenerators as constant power sources for wearable electronics. Nano Energy 2021, 88, 106247. [Google Scholar] [CrossRef]
- Lim, S.-J.; Park, G.-G.; Park, J.-S.; Sohn, Y.-J.; Yim, S.-D.; Yang, T.-H.; Hong, B.K.; Kim, C.-S. Investigation of freeze/thaw durability in polymer electrolyte fuel cells. Int. J. Hydrog. Energy 2010, 35, 13111–13117. [Google Scholar] [CrossRef]
- Ork, N.; Candas, A.Z.A.; Zengin, G. Stretch Fabrics in Leather Manufacturing: Performance Properties of Strech Leathers. Ann. Unıversıty Oradea Fascıcle Textıles Leatherwork 2016, 17, 189–194. [Google Scholar]
- Samouh, Z.; Abed, A.; Cherkaoui, O.; Soulat, D.; Labanieh, A.R.; Boussu, F.; Elmoznine, R. Investigation on the Properties of 3D Warp Interlock Fabrics Based on Moroccan Sisal Yarns as Reinforcement for Composite Materials. J. Nat. Fibers 2021, 19, 6822–6840. [Google Scholar] [CrossRef]
- Zhou, Y.; Hou, J.; Gong, X.; Yang, D. Hybrid panels from woven Kevlar® and Dyneema® fabrics against ballistic impact with wearing flexibility. J. Text. Inst. 2017, 109, 1027–1034. [Google Scholar] [CrossRef]
- Beer, F.; Johnston, R. Mechanics of Materials, 8th ed.; Mc Graw Hill: New York, NY, USA, 2020; Volume 53, p. 1100. [Google Scholar]
- Lemine, A.S.; Zagho, M.M.; Altahtamouni, T.M.; Bensalah, N. Graphene a promising electrode material for supercapacitors—A review. Int. J. Energy Res. 2018, 42, 4284–4300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teymoory, P.; Zhao, J.; Shen, C. How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications? Micromachines 2023, 14, 1249. https://doi.org/10.3390/mi14061249
Teymoory P, Zhao J, Shen C. How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications? Micromachines. 2023; 14(6):1249. https://doi.org/10.3390/mi14061249
Chicago/Turabian StyleTeymoory, Parya, Jingzhou Zhao, and Caiwei Shen. 2023. "How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications?" Micromachines 14, no. 6: 1249. https://doi.org/10.3390/mi14061249
APA StyleTeymoory, P., Zhao, J., & Shen, C. (2023). How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications? Micromachines, 14(6), 1249. https://doi.org/10.3390/mi14061249