Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator
Abstract
1. Introduction
2. Materials and Methods
3. Theoretical Description and Simulation
4. Holographic Fabrication Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Armas-Pérez, J.C.; Hernández-Ortiz, J.P.; Arges, C.G.; Liu, X.; Martínez-González, J.A.; Ocola, L.E.; Bishop, C.; Xie, H.; de Pablo, J.J.; et al. Directed Self-Assembly of Colloidal Particles onto Nematic Liquid Crystalline Defects Engineered by Chemically Patterned Surfaces. ACS Nano 2017, 11, 6498–6501. [Google Scholar] [CrossRef] [PubMed]
- Shusteff, M.; Browar, A.E.M.; Kelly, B.E.; Henriksson, J.; Weisgraber, T.H.; Panas, R.M.; Fang, N.X.; Spadaccini, C.M. One-Step Volumetric Additive Manufacturing of Complex Polymer Structures. Sci. Adv. 2017, 3, eeao5496. [Google Scholar] [CrossRef] [PubMed]
- Bagal, A.; Chang, C.-H. Fabrication of Subwavelength Periodic Nanostructures Using Liquid Immersion Lloyd’s Mirror Interference Lithography. Opt. Lett. 2013, 38, 2531–2534. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Tian, R.; Wu, W.; Li, W.L.; Wang, D. Helium-Ion-Beam Nanofabrication: Extreme Processes and Applications. Int. J. Extrem. Manuf. 2020, 3, 012001. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.; Dai, H.; Yang, Z.; Chen, Z.; Wang, Y.; Chen, Y.; Peng, W.; Shan, W.; Duan, H. Recent Advances in Focused Ion Beam Nanofabrication for Nanostructures and Devices: Fundamentals and Applications. Nanoscale 2021, 13, 1529–1565. [Google Scholar] [CrossRef]
- Brewer, G. Electron-Beam Technology in Microelectronic Fabrication, 1st ed.; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Fleming, J.G.; Lin, S.Y.; El-Kady, I.; Biswas, R.; Ho, K.M. All-Metallic Three-Dimensional Photonic Crytal with a Large Infrared Bandgap. Nature 2002, 417, 52–55. [Google Scholar] [CrossRef]
- Vlasov, Y.A.; Bo, X.Z.; Sturm, J.C.; Norris, D.J. On-Chip Natural Assembly of Silicon Photonic Bandgap Crystals. Nature 2001, 414, 289–293. [Google Scholar] [CrossRef]
- Deubel, M.; von Freymann, G.; Wegener, M.; Pereira, S.; Busch, K.; Soukoulis, C.M. Direct Laser Writing of Three-Dimensional Photonic-Crystal Templates for Telecommunications. Nat. Mater. 2004, 3, 444–447. [Google Scholar] [CrossRef]
- Campbell, M.; Sharp, D.N.; Harrison, M.T.; Denning, R.G.; Turberfield, A.J. Fabrication of Photonic Crystals for the Visible Spectrum by Holographic Lithography. Nature 2000, 404, 53–56. [Google Scholar] [CrossRef]
- Lin, Y.; Herman, P.R.; Darmawikarta, K. Design and Holographic Fabrication of Tetragonal and Cubic Photonic Crystals with Phase Mask: Toward the Mass-Production of Three-Dimensional Photonic Crystals. Appl. Phys. Lett. 2005, 86, 071117. [Google Scholar] [CrossRef]
- Lowell, D.; George, D.; Lutkenhaus, J.; Tian, C.; Adewole, M.; Philipose, U.; Zhang, H.; Lin, Y. Flexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element. Micromachines 2016, 7, 128. [Google Scholar] [CrossRef]
- Javidi, B.; Carnicer, A.; Anand, A.; Barbastathis, G.; Chen, W.; Ferraro, P.; Goodman, J.W.; Horisaki, R.; Khare, K.; Kujawinska, M.; et al. Roadmap on Digital Holography [Invited]. Opt. Express 2021, 29, 35078–35118. [Google Scholar] [CrossRef] [PubMed]
- Panuski, C.L.; Christen, I.; Minkov, M.; Brabec, C.J.; Trajtenberg-Mills, S.; Griffiths, A.D.; McKendry, J.J.D.; Leake, G.L.; Coleman, D.J.; Tran, C.; et al. A Full Degree-of-Freedom Spatiotemporal Light Modulator. Nat. Photonics 2022, 16, 834–842. [Google Scholar] [CrossRef]
- Balena, A.; Bianco, M.; Pisanello, F.; De Vittorio, M. Recent Advances on High-Speed and Holographic Two-Photon Direct Laser Writing. Adv. Funct. Mater. 2023, in press. [CrossRef]
- Xavier, J.; Joseph, J. Complex Photonic Lattices Embedded with Tailored Intrinsic Defects by a Dynamically Reconfigurable Single Step Interferometric Approach. Appl. Phys. Lett. 2014, 104, 081104. [Google Scholar] [CrossRef]
- Kelberer, A.; Boguslawski, M.; Rose, P.; Denz, C. Embedding Defect Sites into Hexagonal Nondiffracting Wave Fields. Opt. Lett. 2012, 37, 5009–5011. [Google Scholar] [CrossRef]
- Lutkenhaus, J.; George, D.; Arigong, B.; Zhang, H.; Philipose, U.; Lin, Y. Holographic Fabrication of Functionally Graded Photonic Lattices through Spatially Specified Phase Patterns. Appl. Opt. 2014, 53, 2548–2555. [Google Scholar] [CrossRef]
- Lutkenhaus, J.; Lowell, D.; George, D.; Zhang, H.; Lin, Y. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator. Micromachines 2016, 7, 59. [Google Scholar] [CrossRef]
- Xavier, J.; Boguslawski, M.; Rose, P.; Joseph, J.; Denz, C. Reconfigurable Optically Induced Quasicrystallographic Three-Dimensional Complex Nonlinear Photonic Lattice Structures. Adv. Mater. 2010, 22, 356–360. [Google Scholar] [CrossRef]
- Lowell, D.; Hassan, S.; Sale, O.; Adewole, M.; Hurley, N.; Philipose, U.; Chen, B.; Lin, Y. Holographic Fabrication of Graded Photonic Super-Quasi-Crystals with Multiple-Level Gradients. Appl. Opt. 2018, 57, 6598–6604. [Google Scholar] [CrossRef]
- Kumar, M.; Joseph, J. Generating a Hexagonal Lattice Wave Field with a Gradient Basis Structure. Opt. Lett. 2014, 39, 2459–2462. [Google Scholar] [CrossRef] [PubMed]
- Rumpf, R.C.; Pazos, J. Synthesis of Spatially Variant Lattices. Opt. Express 2012, 20, 15262–15274. [Google Scholar] [CrossRef] [PubMed]
- Behera, S.; Joseph, J. Single-Step Optical Realization of Bio-Inspired Dual-Periodic Motheye and Gradient-Index-Array Photonic Structures. Opt. Lett. 2016, 41, 3579–3582. [Google Scholar] [CrossRef]
- Ohlinger, K.; Lutkenhaus, J.; Arigong, B.; Zhang, H.; Lin, Y. Spatially Addressable Design of Gradient Index Structures through Spatial Light Modulator Based Holographic Lithography. J. Appl. Phys. 2013, 114, 213102. [Google Scholar] [CrossRef]
- Lowell, D.; Lutkenhaus, J.; George, D.; Philipose, U.; Chen, B.; Lin, Y. Simultaneous Direct Holographic Fabrication of Photonic Cavity and Graded Photonic Lattice with Dual Periodicity, Dual Basis, and Dual Symmetry. Opt. Express 2017, 25, 14444–14452. [Google Scholar] [CrossRef]
- Lowell, D.; Hassan, S.; Adewole, M.; Philipose, U.; Chen, B.; Lin, Y. Holographic Fabrication of Graded Photonic Super-Crystals Using an Integrated Spatial Light Modulator and Reflective Optical Element Laser Projection System. Appl. Opt. 2017, 56, 9888–9891. [Google Scholar] [CrossRef]
- Alnasser, K.; Kamau, S.; Hurley, N.; Cui, J.; Lin, Y. Resonance Modes in Moiré Photonic Patterns for Twistoptics. OSA Contin. 2021, 4, 1339–1347. [Google Scholar] [CrossRef]
- Hassan, S.; Sale, O.; Lowell, D.; Hurley, N.; Lin, Y. Holographic Fabrication and Optical Property of Graded Photonic Super-Crystals with a Rectangular Unit Super-Cell. Photonics 2018, 5, 34. [Google Scholar] [CrossRef]
- Jin, W.; Song, M.; Gao, Y. Optical Induction of Two-Dimensional Photorefractive Photonic Microstructures Using Six Wedge Prisms Array. Opt. Laser Technol. 2020, 128, 106261. [Google Scholar] [CrossRef]
- Jin, W.; Song, M.; Xue, Y.L.; Gao, Y.; Zheng, L. Construction of Photorefractive Photonic Quasicrystal Microstructures by Twisted Square Lattices. Appl. Opt. 2020, 59, 6638–6641. [Google Scholar] [CrossRef]
- Sun, X.; Wu, F.; Wang, S.; Qi, Y.; Zeng, Y. Design of Gradient Photonic Crystal Lens Array Using Two-Parameter Hexagonal Prism Interferometer. Guangxue Xuebao Acta Opt. Sin. 2020, 40, 0222002. [Google Scholar] [CrossRef]
- Amidror, I. The Theory of the Moiré Phenomenon, Volume I: Periodic Layers, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Yankowitz, M.; Chen, S.; Polshyn, H.; Zhang, Y.; Watanabe, K.; Taniguchi, T.; Graf, D.; Young, A.F.; Dean, C.R. Tuning Superconductivity in Twisted Bilayer Graphene. Science 2019, 363, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Sutter, P.; Wimer, S.; Sutter, E. Chiral Twisted van Der Waals Nanowires. Nature 2019, 570, 354–357. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Li, Y.; Cai, J.; Liu, Y.; Watanabe, K.; Taniguchi, T.; Xu, X.; Yankowitz, M. Symmetry Breaking in Twisted Double Bilayer Graphene. Nat. Phys. 2021, 17, 26–30. [Google Scholar] [CrossRef]
- Carr, S.; Massatt, D.; Fang, S.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the Electronic Properties of Two-Dimensional Layered Structures through Their Twist Angle. Phys. Rev. B 2017, 95, 075420. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Tran, K.; Moody, G.; Wu, F.; Lu, X.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D.A.; Quan, J.; Singh, A.; et al. Evidence for Moiré Excitons in van Der Waals Heterostructures. Nature 2019, 567, 71–75. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Z.; Wang, Z.; Gu, L.; Xu, X.; Wu, S.; Gao, C. Direct Observation of van Der Waals Stacking–Dependent Interlayer Magnetism. Science 2019, 366, 983–987. [Google Scholar] [CrossRef]
- Huang, S.; Kim, K.; Efimkin, D.K.; Lovorn, T.; Taniguchi, T.; Watanabe, K.; Macdonald, A.H.; Tutuc, E.; Leroy, B.J. Topologically Protected Helical States in Minimally Twisted Bilayer Graphene. Phys. Rev. Lett. 2018, 121, 037702. [Google Scholar] [CrossRef]
- Wu, F.; Lovorn, T.; Macdonald, A.H. Topological Exciton Bands in Moiré Heterojunctions. Phys. Rev. Lett. 2017, 118, 147401. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated Insulator Behaviour at Half-Filling in Magic-Angle Graphene Superlattices. Nature 2018, 556, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Lou, B.; Zhao, N.; Minkov, M.; Guo, C.; Orenstein, M.; Fan, S. Theory for Twisted Bilayer Photonic Crystal Slabs. Phys. Rev. Lett. 2021, 126, 136101. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Du, F.; Carr, S.; DeVault, C.; Mello, O.; Mazur, E. Modeling the Optical Properties of Twisted Bilayer Photonic Crystals. Light Sci. Appl. 2021, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Zhang, T.; Li, J.; Wang, Q.; Yang, F.; Rho, Y.; Wang, D.; Grigoropoulos, C.P.; Wu, J.; Yao, J. Flat Bands in Magic-Angle Bilayer Photonic Crystals at Small Twists. Phys. Rev. Lett. 2021, 126, 223601. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zheng, Y.; Chen, X.; Huang, C.; Kartashov, Y.V.; Torner, L.; Konotop, V.V.; Ye, F. Localization and Delocalization of Light in Photonic Moiré Lattices. Nature 2020, 577, 42–46. [Google Scholar] [CrossRef]
- Zeng, J.; Hu, Y.; Zhang, X.; Fu, S.; Yin, H.; Li, Z.; Chen, Z. Localization-to-Delocalization Transition of Light in Frequency-Tuned Photonic Moiré Lattices. Opt. Express 2021, 29, 25388–25398. [Google Scholar] [CrossRef]
- Chen, M.K.; Zhang, J.C.; Leung, C.W.; Sun, L.; Fan, Y.; Liang, Y.; Yao, J.; Liu, X.; Yuan, J.; Xu, Y.; et al. Chiral-Magic Angle of Nanoimprint Meta-Device. Nanophotonics 2023, in press. [Google Scholar] [CrossRef]
- Hurley, N.; Kamau, S.; Alnasser, K.; Philipose, U.; Cui, J.; Lin, Y. Laser Diffraction Zones and Spots from Three-Dimensional Graded Photonic Super-Crystals and Moiré Photonic Crystals. Photonics 2022, 9, 395. [Google Scholar] [CrossRef]
- Lutkenhaus, J.; George, D.; Moazzezi, M.; Philipose, U.; Lin, Y. Digitally Tunable Holographic Lithography Using a Spatial Light Modulator as a Programmable Phase Mask. Opt. Express 2013, 21, 26227–26235. [Google Scholar] [CrossRef]
- George, D.; Lutkenhaus, J.; Lowell, D.; Moazzezi, M.; Adewole, M.; Philipose, U.; Zhang, H.; Poole, Z.L.; Chen, K.P.; Lin, Y. Holographic Fabrication of 3D Photonic Crystals through Interference of Multi-Beams with 4 + 1, 5 + 1 and 6 + 1 Configurations. Opt. Express 2014, 22, 22421–22431. [Google Scholar] [CrossRef]
- Alnasser, K.; Kamau, S.; Hurley, N.; Cui, J.; Lin, Y. Photonic Band Gaps and Resonance Modes in 2d Twisted Moiré Photonic Crystal. Photonics 2021, 8, 408. [Google Scholar] [CrossRef]
- Ohlinger, K.; Zhang, H.; Lin, Y.; Xu, D.; Chen, K.P. A Tunable Three Layer Phase Mask for Single Laser Exposure 3D Photonic Crystal Generations: Bandgap Simulation and Holographic Fabrication. Opt. Mater. Express 2011, 1, 1034–1039. [Google Scholar] [CrossRef]
- Bahari, B.; Ndao, A.; Vallini, F.; El Amili, A.; Fainman, Y.; Kanté, B. Nonreciprocal Lasing in Topological Cavities of Arbitrary Geometries. Science 2017, 358, 636–640. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurley, N.; Kamau, S.; Cui, J.; Lin, Y. Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator. Micromachines 2023, 14, 1217. https://doi.org/10.3390/mi14061217
Hurley N, Kamau S, Cui J, Lin Y. Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator. Micromachines. 2023; 14(6):1217. https://doi.org/10.3390/mi14061217
Chicago/Turabian StyleHurley, Noah, Steve Kamau, Jingbiao Cui, and Yuankun Lin. 2023. "Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator" Micromachines 14, no. 6: 1217. https://doi.org/10.3390/mi14061217
APA StyleHurley, N., Kamau, S., Cui, J., & Lin, Y. (2023). Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator. Micromachines, 14(6), 1217. https://doi.org/10.3390/mi14061217