A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Fabrication
2.2. Experimental Setup
3. Results and Discussion
3.1. Basic Performance Characterization of the Thermopile-Based Gas Flow Sensor
3.2. Effects of Chip Angle, Heating Voltage, and Ambient Temperature on Sensor Performance
3.3. Application of the Sensor in Real-Time Respiration Monitoring
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Constanzo, I.; Sen, D.; Rhein, L.; Guler, U. Respiratory monitoring: Current state of the art and future roads. IEEE Rev. Biomed. Eng. 2022, 15, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.C.; Bychkov, D.; Searson, P.C. Wearable devices for precision medicine and health state monitoring. IEEE Trans. Biomed. Eng. 2019, 66, 1242–1258. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cai, Y.; Zhou, W.; Chen, P.; Xu, L.; Han, T.; Hu, Y.; Xu, X.; Liu, B.; Yu, X. A wearable respiration sensor for real-time monitoring of chronic kidney disease. ACS Appl. Mater. Interfaces 2022, 14, 12630–12639. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Elsayed, A.; Mendez, A.; Savaria, Y.; Sawan, M. Contact and remote breathing rate monitoring techniques: A review. IEEE Sens. J. 2021, 20, 14569–14586. [Google Scholar] [CrossRef]
- Oki, Y.; Kaneko, M.; Fujimoto, Y.; Sakai, H.; Misu, S.; Mitani, Y.; Yamaguchi, T.; Yasuda, H.; Ishikawa, A. Epidermal electronics for respiration monitoring via thermo-sensitive measuring. Mater. Today Phys. 2020, 13, 100199. [Google Scholar] [CrossRef]
- Silvestri, S.; Schena, E. Micromachined flow sensors in biomedical applications. Micromachines 2012, 3, 225–243. [Google Scholar] [CrossRef]
- Wu, C.-H.; Kang, D.; Chen, P.-H.; Tai, Y.-C. MEMS thermal flow sensors. Sens. Actuator A Phys. 2016, 241, 135–144. [Google Scholar] [CrossRef]
- Tippar, V.V.; Bridgeman, D.; Wang, D.; Tsow, F.; Forzani, E.; Tao, N. Reliable breathing tracking with wearable mask device. IEEE Sens. J. 2020, 20, 5510–5518. [Google Scholar] [CrossRef]
- Schena, E.; Saccomandi, P.; Silvestri, S. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration. Rev. Sci. Instrum. 2013, 84, 024301. [Google Scholar] [CrossRef]
- Li, X.; Liu, D.; Kumar, R.; Ng, W.; Fu, Y.-Q.; Yuan, J.; Yu, C.; Wu, Y.; Zhou, G.; Farrell, G.; et al. A simple optical fiber interferometer based breathing sensor. Meas. Sci. Technol. 2017, 28, 035105. [Google Scholar] [CrossRef]
- Abbasneiad, B.; Thorby, W.; Razmjou, A.; Jin, D.; Asadnia, M.; Warkiani, M.E. MEMS piezoresistive flow sensors for sleep apnea therapy. Sens. Actuator A Phys. 2018, 279, 577–585. [Google Scholar] [CrossRef]
- Panahi, A.; Hassanzadeh, A.; Moulavi, A. Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sens. Biosens. Res. 2020, 30, 100378. [Google Scholar] [CrossRef]
- Jiang, P.; Zhao, S.; Zhu, R. Smart sensing strip using monolithically integrated flexible flow sensor for noninvasively monitoring respiratory flow. Sensors 2015, 15, 31738–31750. [Google Scholar] [CrossRef] [PubMed]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Warkiani, M.E.; Asadnia, M. Design and applications of MEMS flow sensor: A review. Sens. Actuators A Phys. 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Critello, C.D.; Pullano, S.A. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Kawaoka, H.; Mitsunari, Y.; Matsuhima, M.; Kawabe, T.; Shikida, M. Catheter type thermal flow sensor with small footprint for measuring breathing function. Microsyst. Technol. 2018, 24, 3455–3465. [Google Scholar] [CrossRef]
- Dinh, T.; Phan, H.-P.; Nguyen, T.-K.; Qamar, A.; Woodfield, P.; Zhu, Y.; Nguyen, N.-T.; Dao, D.V. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. J. Phys. D Appl. Phys. 2017, 50, 215401. [Google Scholar] [CrossRef]
- Kitsos, V.; Demosthenous, A.; Liu, X. A smart dual-mode calorimetric flow sensor. IEEE Sens. J. 2020, 20, 1499–1508. [Google Scholar] [CrossRef]
- Balakrishnan, V.; Phan, H.-P.; Dinh, T.; Dao, D.V.; Nguyen, N.-T. Thermal flow sensors for harsh environment. Sensors 2017, 17, 2061. [Google Scholar] [CrossRef]
- Wang, J.; Xue, D.; Li, X. Silicon monolithic microflow sensor: A review. J. Micromech. Microeng. 2021, 31, 104002. [Google Scholar] [CrossRef]
- Zhou, N.; Ding, X.; Li, H.; Ni, Y.; Pu, Y.; Mao, H. A thermopile detector based on micro-bridges for heat transfer. Micromachines 2021, 12, 1554. [Google Scholar] [CrossRef]
- Oda, S.; Anzai, M.; Uematsu, S.; Watanabe, K. A silicon micromachined flow sensor using thermopiles for heat transfer measurements. IEEE Trans. Instrum. Meas. 2003, 52, 1155–1159. [Google Scholar] [CrossRef]
- Wang, S.; Xue, D.; Wang, J.; Li, X. Highly sensitive p+Si/Al thermopile-based gas flow sensors by using front-sided bulk micromachining technology. IEEE Trans. Electron. Devices 2020, 67, 1781–1789. [Google Scholar] [CrossRef]
- Roh, S.-C.; Choi, Y.-M.; Kim, S.-Y. Sensitivity enhancement of silicon micro-machined thermal flow sensor. Sens. Actuators A Phys. 2006, 128, 1–6. [Google Scholar] [CrossRef]
- Ke, W.; Liu, M.; Li, T.; Wang, Y. MEMS thermal gas flow sensor with self-test Function. J. Micromech. Microeng. 2019, 29, 125009. [Google Scholar] [CrossRef]
- Kasai, T.; Momotani, K.; Nakano, Y.; Nakao, H. Improvement of thermal-type MEMS flow sensor chip via new process of silicon etching with sacrificial polycrystalline silicon layer. Electr. Eng. Jpn. 2021, 214, 207–214. [Google Scholar] [CrossRef]
- Zhou, N.; Li, J.; Mao, H.; Liu, H.; Gao, J.; Xiang, J.; Hu, Y.; Shi, M.; Ju, J.; Lei, Y.; et al. The study of reactive ion etching of heavily doped polysilicon based on HBr/O2/He plasmas for thermopile devices. Materials 2020, 13, 4278. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, X.; Wang, R.; Izhar; Xu, J.; Lee, Y.-K. CMOS MEMS thermal flow sensor with enhanced sensitivity for heating, ventilation, and air conditioning application. IEEE Trans. Ind. Electron. 2021, 68, 4469–4476. [Google Scholar] [CrossRef]
- Randjelović, D.; Petropoulos, A.; Kaltsas, G.; Stojanović, M.; Lazić, Ž.; Djurić, Z.; Matić, M. Multipurpose MEMS thermal sensor based on thermopiles. Sens. Actuators A Phys. 2008, 141, 404–413. [Google Scholar] [CrossRef]
- Kaltsas, G.; Nassiopoulou, A.G. Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation. Sens. Actuators A Phys. 1999, 76, 133–138. [Google Scholar] [CrossRef]
- Xue, D.; Song, F.; Wang, J.; Li, X. Single-side fabricated p+Si/Al thermopile-based gas flow sensor for IC-foundry-compatible, high-yield, and low-cost volume manufacturing. IEEE Trans. Electron Devices 2019, 66, 821–824. [Google Scholar] [CrossRef]
- Sosna, C.; Walter, T.; Lang, W. Response time of thermal flow sensors with air as Fluid. Sens. Actuators A Phys. 2011, 172, 15–20. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Width of the N polySi | 30 μm |
Thickness of the N polySi | 0.4 μm |
Width of the P polySi | 20 μm |
Thickness of the P polySi | 0.3 μm |
Width of the microheater | 5 μm |
Thickness of the microheater | 0.5 μm |
Area of the back cavity | 1100 μm × 1100 μm |
Size of the sensor | 1650 μm × 1650 μm |
Number of the N/P polySi thermocouples | 78 |
Structure Type | Suspended Membrane | Size (mm × mm) | Sensitivity (μV/sccm/mW) | Ref. |
---|---|---|---|---|
P + Si/Al | SiN | 0.50 × 0.70 | 0.54 | [23] |
N/P polySi | Si3N4-SiO2 | 3.00 × 3.00 | 0.79 | [25] |
P + Si/Al | Si-SiO2 | 3.60 × 4.80 | 0.01 | [29] |
P polySi/Al | Si | 1.10 × 1.50 | 2.50 | [30] |
P + Si/Al | SiN-SiO2 | 0.65 × 0.65 | 0.20 | [31] |
N/P polySi | SiO2-Si3N4-SiO2 | 1.65 × 1.65 | 6.62 | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, C.; Ding, X.; Ni, Y.; Zhou, N.; Wang, Y.; Mao, H. A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring. Micromachines 2023, 14, 910. https://doi.org/10.3390/mi14050910
Liu Z, Zhang C, Ding X, Ni Y, Zhou N, Wang Y, Mao H. A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring. Micromachines. 2023; 14(5):910. https://doi.org/10.3390/mi14050910
Chicago/Turabian StyleLiu, Zemin, Chenchen Zhang, Xuefeng Ding, Yue Ni, Na Zhou, Yanhong Wang, and Haiyang Mao. 2023. "A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring" Micromachines 14, no. 5: 910. https://doi.org/10.3390/mi14050910
APA StyleLiu, Z., Zhang, C., Ding, X., Ni, Y., Zhou, N., Wang, Y., & Mao, H. (2023). A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring. Micromachines, 14(5), 910. https://doi.org/10.3390/mi14050910