A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Fabrication
2.2. Experimental Setup
3. Results and Discussion
3.1. Basic Performance Characterization of the Thermopile-Based Gas Flow Sensor
3.2. Effects of Chip Angle, Heating Voltage, and Ambient Temperature on Sensor Performance
3.3. Application of the Sensor in Real-Time Respiration Monitoring
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Constanzo, I.; Sen, D.; Rhein, L.; Guler, U. Respiratory monitoring: Current state of the art and future roads. IEEE Rev. Biomed. Eng. 2022, 15, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.C.; Bychkov, D.; Searson, P.C. Wearable devices for precision medicine and health state monitoring. IEEE Trans. Biomed. Eng. 2019, 66, 1242–1258. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cai, Y.; Zhou, W.; Chen, P.; Xu, L.; Han, T.; Hu, Y.; Xu, X.; Liu, B.; Yu, X. A wearable respiration sensor for real-time monitoring of chronic kidney disease. ACS Appl. Mater. Interfaces 2022, 14, 12630–12639. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Elsayed, A.; Mendez, A.; Savaria, Y.; Sawan, M. Contact and remote breathing rate monitoring techniques: A review. IEEE Sens. J. 2021, 20, 14569–14586. [Google Scholar] [CrossRef]
- Oki, Y.; Kaneko, M.; Fujimoto, Y.; Sakai, H.; Misu, S.; Mitani, Y.; Yamaguchi, T.; Yasuda, H.; Ishikawa, A. Epidermal electronics for respiration monitoring via thermo-sensitive measuring. Mater. Today Phys. 2020, 13, 100199. [Google Scholar] [CrossRef]
- Silvestri, S.; Schena, E. Micromachined flow sensors in biomedical applications. Micromachines 2012, 3, 225–243. [Google Scholar] [CrossRef]
- Wu, C.-H.; Kang, D.; Chen, P.-H.; Tai, Y.-C. MEMS thermal flow sensors. Sens. Actuator A Phys. 2016, 241, 135–144. [Google Scholar] [CrossRef]
- Tippar, V.V.; Bridgeman, D.; Wang, D.; Tsow, F.; Forzani, E.; Tao, N. Reliable breathing tracking with wearable mask device. IEEE Sens. J. 2020, 20, 5510–5518. [Google Scholar] [CrossRef]
- Schena, E.; Saccomandi, P.; Silvestri, S. A high sensitivity fiber optic macro-bend based gas flow rate transducer for low flow rates: Theory, working principle, and static calibration. Rev. Sci. Instrum. 2013, 84, 024301. [Google Scholar] [CrossRef]
- Li, X.; Liu, D.; Kumar, R.; Ng, W.; Fu, Y.-Q.; Yuan, J.; Yu, C.; Wu, Y.; Zhou, G.; Farrell, G.; et al. A simple optical fiber interferometer based breathing sensor. Meas. Sci. Technol. 2017, 28, 035105. [Google Scholar] [CrossRef][Green Version]
- Abbasneiad, B.; Thorby, W.; Razmjou, A.; Jin, D.; Asadnia, M.; Warkiani, M.E. MEMS piezoresistive flow sensors for sleep apnea therapy. Sens. Actuator A Phys. 2018, 279, 577–585. [Google Scholar] [CrossRef]
- Panahi, A.; Hassanzadeh, A.; Moulavi, A. Design of a low cost, double triangle, piezoelectric sensor for respiratory monitoring applications. Sens. Biosens. Res. 2020, 30, 100378. [Google Scholar] [CrossRef]
- Jiang, P.; Zhao, S.; Zhu, R. Smart sensing strip using monolithically integrated flexible flow sensor for noninvasively monitoring respiratory flow. Sensors 2015, 15, 31738–31750. [Google Scholar] [CrossRef] [PubMed]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Warkiani, M.E.; Asadnia, M. Design and applications of MEMS flow sensor: A review. Sens. Actuators A Phys. 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Critello, C.D.; Pullano, S.A. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Kawaoka, H.; Mitsunari, Y.; Matsuhima, M.; Kawabe, T.; Shikida, M. Catheter type thermal flow sensor with small footprint for measuring breathing function. Microsyst. Technol. 2018, 24, 3455–3465. [Google Scholar] [CrossRef]
- Dinh, T.; Phan, H.-P.; Nguyen, T.-K.; Qamar, A.; Woodfield, P.; Zhu, Y.; Nguyen, N.-T.; Dao, D.V. Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. J. Phys. D Appl. Phys. 2017, 50, 215401. [Google Scholar] [CrossRef]
- Kitsos, V.; Demosthenous, A.; Liu, X. A smart dual-mode calorimetric flow sensor. IEEE Sens. J. 2020, 20, 1499–1508. [Google Scholar] [CrossRef]
- Balakrishnan, V.; Phan, H.-P.; Dinh, T.; Dao, D.V.; Nguyen, N.-T. Thermal flow sensors for harsh environment. Sensors 2017, 17, 2061. [Google Scholar] [CrossRef][Green Version]
- Wang, J.; Xue, D.; Li, X. Silicon monolithic microflow sensor: A review. J. Micromech. Microeng. 2021, 31, 104002. [Google Scholar] [CrossRef]
- Zhou, N.; Ding, X.; Li, H.; Ni, Y.; Pu, Y.; Mao, H. A thermopile detector based on micro-bridges for heat transfer. Micromachines 2021, 12, 1554. [Google Scholar] [CrossRef]
- Oda, S.; Anzai, M.; Uematsu, S.; Watanabe, K. A silicon micromachined flow sensor using thermopiles for heat transfer measurements. IEEE Trans. Instrum. Meas. 2003, 52, 1155–1159. [Google Scholar] [CrossRef]
- Wang, S.; Xue, D.; Wang, J.; Li, X. Highly sensitive p+Si/Al thermopile-based gas flow sensors by using front-sided bulk micromachining technology. IEEE Trans. Electron. Devices 2020, 67, 1781–1789. [Google Scholar] [CrossRef]
- Roh, S.-C.; Choi, Y.-M.; Kim, S.-Y. Sensitivity enhancement of silicon micro-machined thermal flow sensor. Sens. Actuators A Phys. 2006, 128, 1–6. [Google Scholar] [CrossRef]
- Ke, W.; Liu, M.; Li, T.; Wang, Y. MEMS thermal gas flow sensor with self-test Function. J. Micromech. Microeng. 2019, 29, 125009. [Google Scholar] [CrossRef]
- Kasai, T.; Momotani, K.; Nakano, Y.; Nakao, H. Improvement of thermal-type MEMS flow sensor chip via new process of silicon etching with sacrificial polycrystalline silicon layer. Electr. Eng. Jpn. 2021, 214, 207–214. [Google Scholar] [CrossRef]
- Zhou, N.; Li, J.; Mao, H.; Liu, H.; Gao, J.; Xiang, J.; Hu, Y.; Shi, M.; Ju, J.; Lei, Y.; et al. The study of reactive ion etching of heavily doped polysilicon based on HBr/O2/He plasmas for thermopile devices. Materials 2020, 13, 4278. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, X.; Wang, R.; Izhar; Xu, J.; Lee, Y.-K. CMOS MEMS thermal flow sensor with enhanced sensitivity for heating, ventilation, and air conditioning application. IEEE Trans. Ind. Electron. 2021, 68, 4469–4476. [Google Scholar] [CrossRef]
- Randjelović, D.; Petropoulos, A.; Kaltsas, G.; Stojanović, M.; Lazić, Ž.; Djurić, Z.; Matić, M. Multipurpose MEMS thermal sensor based on thermopiles. Sens. Actuators A Phys. 2008, 141, 404–413. [Google Scholar] [CrossRef]
- Kaltsas, G.; Nassiopoulou, A.G. Novel C-MOS compatible monolithic silicon gas flow sensor with porous silicon thermal isolation. Sens. Actuators A Phys. 1999, 76, 133–138. [Google Scholar] [CrossRef]
- Xue, D.; Song, F.; Wang, J.; Li, X. Single-side fabricated p+Si/Al thermopile-based gas flow sensor for IC-foundry-compatible, high-yield, and low-cost volume manufacturing. IEEE Trans. Electron Devices 2019, 66, 821–824. [Google Scholar] [CrossRef]
- Sosna, C.; Walter, T.; Lang, W. Response time of thermal flow sensors with air as Fluid. Sens. Actuators A Phys. 2011, 172, 15–20. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Width of the N polySi | 30 μm |
Thickness of the N polySi | 0.4 μm |
Width of the P polySi | 20 μm |
Thickness of the P polySi | 0.3 μm |
Width of the microheater | 5 μm |
Thickness of the microheater | 0.5 μm |
Area of the back cavity | 1100 μm × 1100 μm |
Size of the sensor | 1650 μm × 1650 μm |
Number of the N/P polySi thermocouples | 78 |
Structure Type | Suspended Membrane | Size (mm × mm) | Sensitivity (μV/sccm/mW) | Ref. |
---|---|---|---|---|
P + Si/Al | SiN | 0.50 × 0.70 | 0.54 | [23] |
N/P polySi | Si3N4-SiO2 | 3.00 × 3.00 | 0.79 | [25] |
P + Si/Al | Si-SiO2 | 3.60 × 4.80 | 0.01 | [29] |
P polySi/Al | Si | 1.10 × 1.50 | 2.50 | [30] |
P + Si/Al | SiN-SiO2 | 0.65 × 0.65 | 0.20 | [31] |
N/P polySi | SiO2-Si3N4-SiO2 | 1.65 × 1.65 | 6.62 | Our work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, C.; Ding, X.; Ni, Y.; Zhou, N.; Wang, Y.; Mao, H. A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring. Micromachines 2023, 14, 910. https://doi.org/10.3390/mi14050910
Liu Z, Zhang C, Ding X, Ni Y, Zhou N, Wang Y, Mao H. A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring. Micromachines. 2023; 14(5):910. https://doi.org/10.3390/mi14050910
Chicago/Turabian StyleLiu, Zemin, Chenchen Zhang, Xuefeng Ding, Yue Ni, Na Zhou, Yanhong Wang, and Haiyang Mao. 2023. "A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring" Micromachines 14, no. 5: 910. https://doi.org/10.3390/mi14050910
APA StyleLiu, Z., Zhang, C., Ding, X., Ni, Y., Zhou, N., Wang, Y., & Mao, H. (2023). A Thermopile-Based Gas Flow Sensor with High Sensitivity for Noninvasive Respiration Monitoring. Micromachines, 14(5), 910. https://doi.org/10.3390/mi14050910