Research Progress of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes
Abstract
:1. Introduction
- The IQE of AlGaN-based DUV LEDs is relatively sensitive to the threading dislocation density (TDD), and the high level of TDD can seriously affect the device performance of DUV LEDs.
- For AlGaN-based DUV LEDs, the hole concentration of the p-AlGaN layer and the electron injection efficiency are low.
- The p-GaN layer in AlGaN-based DUV LEDs can absorb ultraviolet light, resulting in a low LEE.
2. Increase the IQE of DUV LEDs
2.1. Improve the Crystalline Quality
2.2. Improve the Hole Injection Efficiency
2.3. Improve the Electron Injection Efficiency
3. Increase the Light Extraction Efficiency of DUV LEDs
4. Increase the Wall-Plug Efficiency of DUV LEDs
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Hirayama, H.; Enomoto, Y.; Kinoshita, A.; Hirata, A.; Aoyagi, Y. Efficient 230–280 nm emission from high-Al-content AlGaN-based multiquantum wells. Appl. Phys. Lett. 2002, 80, 37. [Google Scholar] [CrossRef]
- Kinoshita, A.; Hirayama, H.; Ainoya, M.; Aoyagi, Y.; Hirata, A. Room-temperature operation at 333 nm of Al0.03Ga0.97N/Al0.25Ga0.75N quantum-well light-emitting diodes with Mg-doped superlattice layers. Appl. Phys. Lett. 2000, 77, 175. [Google Scholar] [CrossRef]
- Sun, W.; Adivarahan, V.; Shatalov, M.; Lee, Y.; Wu, S.; Yang, J.; Zhang, J.; Khan, M.A. Continuous wave milliwatt power AlGaN light emitting diodes at 280 nm. Jpn. J. Appl. Phys. 2004, 43, L1419. [Google Scholar] [CrossRef]
- Adivarahan, V.; Wu, S.; Zhang, J.P.; Chitnis, A.; Shatalov, M.; Madavilli, V.; Gaska, R.; Khan, M.A. High-efficiency 269 nm emission deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 2004, 84, 4762. [Google Scholar] [CrossRef]
- Adivarahan, V.; Sun, W.H.; Chitnis, A.; Shatalov, M.; Wu, S.; Maruska, H.P.; Khan, M.A. 250 nm AlGaN light-emitting diodes. Appl. Phys. Lett. 2004, 85, 2175. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef]
- Hirayama, H.; Noguchi, N.; Yatabe, T.; Kamata, N. 227 nm AlGaN Light-Emitting Diode with 0.15 mW Output Power Realized using a Thin Quantum Well and AlN Buffer with Reduced Threading Dislocation Density. Appl. Phys. Express 2008, 1, 051101. [Google Scholar] [CrossRef]
- Hirayama, H.; Noguchi, N.; Kamata, N. 222 nm Deep-Ultraviolet AlGaN Quantum Well Light-Emitting Diode with Vertical Emission Properties. Appl. Phys. Express 2010, 3, 032102. [Google Scholar] [CrossRef]
- Kinoshita, T.; Hironaka, K.; Obata, T.; Nagashima, T.; Dalmau, R.; Schlesser, R.; Sitar, Z. Deep-Ultraviolet Light-Emitting Diodes Fabricated on AlN Substrates Prepared by Hydride Vapor Phase Epitaxy. Appl. Phys. Express 2012, 5, 122101. [Google Scholar] [CrossRef]
- Shatalov, M.; Sun, W.; Lunev, A.; Hu, X.; Dobrinsky, A.; Bilenko, Y.; Yang, J.; Shur, M.; Gaska, R.; Moe, C.; et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 2012, 5, 082101. [Google Scholar] [CrossRef]
- Grandusky, J.R.; Gibb, S.R.; Mendrick, M.C.; Moe, C.; Wraback, M.; Schowalter, L.J. High output power from 260 nm Pseudomorphic ultraviolet light-emitting diodes with improved thermal performance. Appl. Phys. Express 2011, 4, 082101. [Google Scholar] [CrossRef]
- Grandusky, J.R.; Chen, J.; Gibb, S.R.; Mendrick, M.C.; Moe, C.G.; Rodak, L.; Garrett, G.A.; Wraback, M.; Schowalter, L.J. 270 nm Pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl. Phys. Express 2013, 6, 032101. [Google Scholar] [CrossRef]
- Kinoshita, T.; Obata, T.; Nagashima, T.; Yanagi, H.; Moody, B.; Mita, S.; Inoue, S.; Kumagai, Y.; Koukitu, A.; Sitar, Z. Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 2013, 6, 092103. [Google Scholar] [CrossRef]
- Piprek, J. Efficiency droop in nitride-based light-emitting diodes. Phys. Status Solidi 2010, 207, 2217–2225. [Google Scholar] [CrossRef]
- Glaab, J.; Ruschel, J.; Ploch, N.L.; Cho, H.K.; Mehnke, F.; Sulmoni, L.; Guttmann, M.; Wernicke, T.; Weyers, M.; Einfeldt, S.; et al. Impact of operation parameters on the degradation of 233 nm AlGaN-based far-UVC LEDs. J. Appl. Phys. 2022, 131, 014501. [Google Scholar] [CrossRef]
- Imura, M.; Nakano, K.; Narita, G.; Fujimoto, N.; Okada, N.; Balakrishnan, K.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J. Cryst. Growth 2007, 298, 257–260. [Google Scholar] [CrossRef]
- Ambacher, O. Growth and applications of Group III-nitrides. J. Phys. D 1998, 31, 2653. [Google Scholar] [CrossRef]
- Kneissl, M.; Kolbe, T.; Chua, C.; Kueller, V.; Lobo, N.; Stellmach, J.; Knauer, A.; Rodriguez, H.; Einfeldt, S.; Yang, Z.; et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 2011, 26, 014036. [Google Scholar] [CrossRef]
- Hirayama, H.; Yatabe, T.; Noguchi, N.; Ohashi, T.; Kamata, N. 231–261nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 2007, 91, 071901. [Google Scholar] [CrossRef]
- Jain, R.; Sun, W.; Yang, J.; Shatalov, M.; Hu, X.; Sattu, A.; Lunev, A.; Deng, J.; Shturm, I.; Bilenko, Y.; et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 2008, 93, 051113. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, H.M.; Gaevski, M.E.; Chen, C.Q.; Fareed, Q.; Yang, J.W.; Simin, G.; Khan, M.A. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl. Phys. Lett. 2002, 80, 3542. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Mamun, A.; Hussain, K.; Gaevski, M.; Ahmad, I.; Khan, A. Growth evolution of high-quality MOCVD aluminum nitride using nitrogen as carrier gas on the sapphire substrate. J. Mater. Res. 2021, 36, 4360–4369. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Zhao, D.; Liang, F.; Chen, P.; Liu, Z. Adjustment of Al atom migration ability and its effect on the surface morphology of AlN grown on sapphire by metal–organic chemical vapor deposition. Semicond. Sci. Technol. 2021, 36, 105010. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Zhao, D.; Liang, F.; Chen, P.; Liu, Z. High-quality AlN growth on flat sapphire at relatively low temperature by crystal island shape control method. Appl. Surf. Sci. 2022, 606, 154919. [Google Scholar] [CrossRef]
- Miyake, H.; Nishio, G.; Suzuki, S.; Hiramatsu, K.; Fukuyama, H.; Kaur, J.; Kuwano, N. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 2016, 9, 025501. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Suzuki, R.; Miyake, H.; Harada, S.; Ujihara, T. Improvement mechanism of sputtered AlN films by high-temperature annealing. J. Cryst. Growth 2018, 502, 41–44. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, Y.; Sheng, S.; Wang, T.; Zhang, J.; Huang, L.; Zhang, X.; Kang, J.; Luo, W.; Li, Y.; et al. Four-inch high quality crack-free AlN layer grown on a high-temperature annealed AlN template by MOCVD. J. Semicond. 2021, 42, 122804. [Google Scholar] [CrossRef]
- Nakano, K.; Imura, M.; Narita, G.; Kitano, T.; Hirose, Y.; Fujimoto, N.; Okada, N.; Kawashima, T.; Iida, K.; Balakrishnan, K.; et al. Epitaxial lateral overgrowth of AlN layers on patterned sapphire substrates. Phys. Status Solidi 2006, 203, 1632–1635. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, F.; Wang, J.; He, C.; Guo, W.; Wang, M.; Sheng, B.; Lu, L.; Qin, Z.; Wang, X.; et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci. Rep. 2016, 6, 35934. [Google Scholar] [CrossRef] [Green Version]
- Okada, N.; Saito, T.; Fujikawa, S.; Maeda, N.; Jo, M.; Hirayama, H.; Tadatomo, K. Investigation of off-cut angle of sapphire for epitaxial lateral overgrowth of AlN and fabrication of high-quality AlN template. J. Cryst. Growth 2022, 588, 126640. [Google Scholar] [CrossRef]
- Kueller, V.; Knauer, A.; Brunner, F.; Zeimer, U.; Rodriguez, H.; Kneissl, M.; Weyers, M. Growth of AlGaN and AlN on patterned AlN/sapphire templates. J. Cryst. Growth 2011, 315, 200–203. [Google Scholar] [CrossRef]
- Zeimer, U.; Kueller, V.; Knauer, A.; Mogilatenko, A.; Weyers, M.; Kneissl, M. High quality AlGaN grown on ELO AlN/sapphire templates. J. Cryst. Growth 2013, 377, 32–36. [Google Scholar] [CrossRef]
- Mogilatenko, A.; Küller, V.; Knauer, A.; Jeschke, J.; Zeimer, U.; Weyers, M.; Tränkle, G. Defect analysis in AlGaN layers on AlN templates obtained by epitaxial lateral overgrowth. J. Cryst. Growth 2014, 402, 222–229. [Google Scholar] [CrossRef]
- Dong, P.; Yan, J.; Wang, J.; Zhang, Y.; Geng, C.; Wei, T.; Cong, P.; Zhang, Y.Y.; Zeng, J.; Tian, Y.; et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl. Phys. Lett. 2013, 102, 241113. [Google Scholar] [CrossRef]
- Dong, P.; Yan, J.; Zhang, Y.; Wang, J.; Zeng, J.; Geng, C.; Cong, P.; Sun, L.; Wei, T.; Zhao, L.; et al. AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency. J. Cryst. Growth 2014, 395, 9–13. [Google Scholar] [CrossRef]
- Li, D.; Jiang, K.; Sun, X.; Guo, C. AlGaN photonics: Recent advances in materials and ultraviolet devices. Adv. Opt. Photonics 2018, 10, 43–110. [Google Scholar] [CrossRef]
- Katsuragawa, M.; Sota, S.; Komori, M.; Anbe, C.; Takeuchi, T.; Sakai, H.; Amano, H.; Akasaki, I. Thermal ionization energy of Si and Mg in AlGaN. J. Cryst. Growth 1998, 189–190, 528–531. [Google Scholar] [CrossRef]
- Allerman, A.A.; Crawford, M.H.; Miller, M.A.; Lee, S.R. Growth and characterization of Mg-doped AlGaN–AlN short-period superlattices for deep-UV optoelectronic devices. J. Cryst. Growth 2010, 312, 756–761. [Google Scholar] [CrossRef]
- Zheng, T.C.; Lin, W.; Liu, R.; Cai, D.J.; Li, J.C.; Li, S.P.; Kang, J.Y. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices. Sci. Rep. 2016, 6, 21897. [Google Scholar] [CrossRef] [Green Version]
- Ebata, K.; Nishinaka, J.; Taniyasu, Y.; Kumakura, K. High hole concentration in Mg-doped AlN/AlGaN superlattices with high Al content. Jpn. J. Appl. Phys. 2018, 57, 04FH09. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, H.; Han, E.; Yue, G.; Chen, Z.; Wu, Z.; Wang, G.; Jiang, H. High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping. Appl. Phys. Lett. 2015, 106, 162102. [Google Scholar] [CrossRef]
- Kuo, Y.; Chang, J.; Chen, F.; Shih, Y.; Chang, H. Numerical Investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes. IEEE J. Quantum Elect. 2016, 52, 1–5. [Google Scholar] [CrossRef]
- Kuo, Y.; Chang, J.; Chang, H.; Chen, F.; Shih, Y.; Liou, B. Polarization effect in AlGaN-based deep-ultraviolet light-emitting diodes. IEEE J. Quantum Elect. 2017, 53, 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Wu, F.; Yan, W.; Xiong, H.; Dai, J.; Fang, Y.; Wu, Z.; Chen, C. The Advantages of AlGaN-Based UV-LEDs Inserted With a p-AlGaN Layer Between the EBL and Active Region. IEEE Photon. J. 2013, 5, 1600310. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Chen, S.; Chu, C.; Tian, K.; Fang, M.; Zhang, Y.; Bi, W.; Kuo, H. Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high Mg doping efficiency. Nanoscale Res. Lett. 2018, 13, 122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.H.; Kou, J.; Chen, S.; Shao, H.; Che, J.; Chu, C.; Tian, K.; Zhang, Y.; Bi, W.; Kuo, H. Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes. Photonics Res. 2019, 7, B1–B6. [Google Scholar] [CrossRef]
- Mehnke, F.; Kuhn, C.; Guttmann, M.; Reich, C.; Kolbe, T.; Kueller, V.; Knauer, A.; Lapeyrade, M.; Einfeldt, S.; Rass, J.; et al. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 2014, 105, 051113. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Chen, S.; Zhang, Y.; Li, L.; Wang, S.; Tian, K.; Chu, C.; Fang, M.; Kuo, H.; Bi, W. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes. Acs Photonics 2017, 4, 1846–1850. [Google Scholar] [CrossRef]
- Liu, M.; Liu, C. Enhanced Carrier Injection in AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Polarization Engineering at the LQB/p-EBL Interface. IEEE Photon. J. 2022, 14, 1–5. [Google Scholar] [CrossRef]
- Zhang, D.; Chu, C.; Tian, K.; Kou, J.; Bi, W.; Zhang, Y.; Zhang, Z.H. Improving hole injection from p -EBL down to the end of active region by simply playing with polarization effect for AlGaN based DUV light-emitting diodes. AIP Adv. 2020, 10, 065032. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Li, L.; Zhang, Y.; Xu, F.; Shi, Q.; Shen, B.; Bi, W. On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes. Opt. Express 2017, 25, 16550–16559. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.; Yen, S.; Kuo, Y. Deep-ultraviolet light-emitting diodes with gradually increased barrier thicknesses from n-layers to p-layers. Appl. Phys. Lett. 2011, 98, 111114. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Chen, S.; Tian, W.; Xu, J.; Li, X.; Wu, Z.; Fang, Y.; Dai, J.; Chen, C. Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells. Superlattices Microstruct. 2014, 75, 63–71. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, N.; Fan, G.; Zhang, Y. Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with composition-varying AlGaN multilayer barriers. Superlattices Microstruct. 2014, 76, 149–155. [Google Scholar] [CrossRef]
- Tian, K.; Chen, Q.; Chu, C.; Fang, M.; Li, L.; Zhang, Y.; Bi, W.; Chen, C.; Zhang, Z.H.; Dai, J. Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations. Phys. Status Solidi Rapid Res. Lett. 2018, 12, 1700346. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Chu, C.; Chiu, C.H.; Lu, T.C.; Li, L.; Zhang, Y.; Tian, K.; Fang, M.; Sun, Q.; Kuo, H.; et al. UV A light-emitting diode grown on Si substrate with enhanced electron and hole injections. Opt. Lett. 2017, 42, 4533–4536. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, Y.; Bi, W.; Demir, H.V.; Sun, X.W. On the internal quantum efficiency for InGaN/GaN light-emitting diodes grown on insulating substrates. Phys. Status Solidi A 2016, 213, 3078–3102. [Google Scholar] [CrossRef]
- Cho, J.; Schubert, E.F.; Kim, J.K. Efficiency droop in light-emitting diodes: Challenges and countermeasures. Laser Photonics Rev. 2013, 7, 408–421. [Google Scholar] [CrossRef]
- So, B.; Kim, J.; Shin, E.; Kwak, T.; Kim, T.; Nam, O. Efficiency improvement of deep-ultraviolet light emitting diodes with gradient electron blocking layers. Phys. Status Solidi A 2018, 215, 1700677. [Google Scholar] [CrossRef]
- Kwon, M.R.; Park, T.H.; Lee, T.H.; Lee, B.R.; Kim, T.G. Improving the performance of AlGaN-based deep-ultraviolet light-emitting diodes using electron blocking layer with a heart-shaped graded Al composition. Superlattices Microstruct. 2018, 116, 215–220. [Google Scholar] [CrossRef]
- Huang, J.; Guo, Z.; Guo, M.; Liu, Y.; Yao, S.; Sun, J.; Sun, H. Study of deep ultraviolet light-emitting diodes with a p-AlInN/AlGaN superlattice electron-blocking layer. J. Electron. Mater. 2017, 46, 4527–4531. [Google Scholar] [CrossRef]
- Kuo, Y.; Chen, F.; Lin, B.; Chang, J.; Shih, Y.; Kuo, H. Simulation and experimental study on barrier thickness of superlattice electron blocking nayer in near-ultraviolet light-emitting diodes. IEEE J. Quantum Elect. 2016, 52, 1–6. [Google Scholar]
- Sun, P.; Bao, X.; Liu, S.; Ye, C.; Yuan, Z.; Wu, Y.; Li, S.; Kang, J. Advantages of AlGaN-based deep ultraviolet light-emitting diodes with a superlattice electron blocking layer. Superlattices Microstruct. 2015, 85, 59–66. [Google Scholar] [CrossRef]
- Pandey, A.; Shin, W.J.; Liu, X.; Mi, Z. Effect of electron blocking layer on the efficiency of AlGaN mid-ultraviolet light emitting diodes. Opt. Express 2019, 27, A738–A745. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Gu, H.; Wei, Y.; Zheng, S. Performance enhancement of AlGaN-based deep ultraviolet light-emitting diodes by using stepped and super-lattice n-type confinement layer. Superlattices Microstruct. 2020, 141, 106492. [Google Scholar] [CrossRef]
- Yu, H.; Ren, Z.; Zhang, H.; Dai, J.; Chen, C.; Long, S.; Sun, H. Advantages of AlGaN-based deep-ultraviolet light-emitting diodes with an Al-composition graded quantum barrier. Opt. Express 2019, 27, A1544–A1553. [Google Scholar] [CrossRef]
- Xing, C.; Yu, H.; Ren, Z.; Zhang, H.; Dai, J.; Chen, C.; Sun, H. Performance Improvement of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes With Step-Like Quantum Barriers. IEEE J. Quantum Elect. 2020, 56, 1–6. [Google Scholar] [CrossRef]
- Fang, M.; Tian, K.; Chu, C.; Zhang, Y.; Zhang, Z.H.; Bi, W. Manipulation of Si doping concentration for modification of the electric field and carrier injection for AlGaN-based deep-ultraviolet light-emitting diodes. Crystals 2018, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.H.; Tian, K.; Chu, C.; Fang, M.; Zhang, Y.; Bi, W.; Kuo, H. Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes. Opt. Express 2018, 26, 17977–17987. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, J.; Zhang, Y.; Zhang, H.; Long, H.; Chen, Q.; Shan, M.; Du, S.; Dai, J.; Chen, C. Enhanced Performance of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes with Chirped Superlattice Electron Deceleration Layer. Nanoscale Res. Lett. 2019, 14, 347. [Google Scholar] [CrossRef] [Green Version]
- Deng, G.; Zhang, Y.; Yu, Y.; Yan, L.; Li, P.; Han, X.; Chen, L.; Zhao, D.; Du, G. Simulation and fabrication of N-polar GaN-based blue-green light-emitting diodes with p-type AlGaN electron blocking layer. J. Mater. Sci. Mater. Electron. 2018, 29, 9321–9325. [Google Scholar] [CrossRef]
- Verma, J.; Simon, J.; Protasenko, V.; Kosel, T.; Xing, H.G.; Jena, D. N-polar III-nitride quantum well light-emitting diodes with polarization-induced doping. Appl. Phys. Lett. 2011, 99, 171104. [Google Scholar] [CrossRef]
- Tao, H.; Xu, S.; Zhang, J.; Li, P.; Lin, Z.; Hao, Y. Numerical Investigation on the Enhanced Performance of N-Polar AlGaN-Based Ultraviolet Light-Emitting Diodes With Superlattice p-Type Doping. IEEE Trans. Electron Devices 2019, 66, 478–484. [Google Scholar] [CrossRef]
- Zhuang, Z.; Iida, D.; Ohkawa, K. Enhanced performance of N-polar AlGaN-based deep-ultraviolet light-emitting diodes. Opt. Express 2020, 28, 30423–30431. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, H.; Cheng, T.; Wei, T.; Wang, R.; Yang, S.; Dou, Z.; Liu, B.; Zhang, S.; Xie, Y.; et al. Direct Growth of Nanopatterned Graphene on Sapphire and Its Application in Light Emitting Diodes. Adv. Funct. Mater. 2020, 30, 2001483. [Google Scholar] [CrossRef]
- Chang, H.; Chen, Z.; Li, W.; Yan, J.; Hou, R.; Yang, S.; Liu, Z.; Yuan, G.; Wang, J.; Li, J.; et al. Graphene-assisted quasi-van der Waals epitaxy of AlN film for ultraviolet light emitting diodes on nano-patterned sapphire substrate. Appl. Phys. Lett. 2019, 114, 091107. [Google Scholar] [CrossRef] [Green Version]
- Ooi, Y.K.; Zhang, J. Light Extraction Efficiency Analysis of Flip-Chip Ultraviolet Light-Emitting Diodes with Patterned Sapphire Substrate. IEEE Photon. J. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Zhang, J.; Sun, C.; Chu, C.; Tian, K.; Zhang, Z.H.; Bi, W. Effects of meshed p-type contact structure on the light extraction effect for deep ultraviolet flip-chip light-emitting diodes. Nanoscale Res. Lett. 2019, 14, 149. [Google Scholar] [CrossRef]
- Lobo, N.; Rodriguez, H.; Knauer, A.; Hoppe, M.; Einfeldt, S.; Vogt, P.; Weyers, M.; Kneissl, M. Enhancement of light extraction in ultraviolet light-emitting diodes using nanopixel contact design with Al reflector. Appl. Phys. Lett. 2010, 96, 081109. [Google Scholar] [CrossRef]
- Sung, Y.J.; Kim, M.S.; Kim, H.; Choi, S.; Kim, Y.H.; Jung, M.H.; Choi, R.J.; Moon, Y.T.; Oh, J.T.; Jeong, H.H.; et al. Light extraction enhancement of AlGaN-based vertical type deep-ultraviolet light-emitting-diodes by using highly reflective ITO/Al electrode and surface roughening. Opt. Express 2019, 27, 29930–29937. [Google Scholar] [CrossRef]
- Saifaddin, B.K.; Iza, M.; Foronda, H.; Almogbel, A.; Zollner, C.J.; Wu, F.; Alyamani, A.; Albadri, A.; Nakamura, S.; DenBaars, S.P.; et al. Impact of roughening density on the light extraction efficiency of thin-film flip-chip ultraviolet LEDs grown on SiC. Opt. Express 2019, 27, A1074–A1083. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, H.; Dai, J.; Zhang, S.; Wang, S.; He, J.; Liang, R.; Zhang, Z.H.; Chen, C. Enhanced the Optical Power of AlGaN-Based Deep Ultraviolet Light-Emitting Diode by Optimizing Mesa Sidewall Angle. IEEE Photon. J. 2018, 10, 1–7. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, J.H.; Kim, D.Y.; Schubert, E.F.; Kim, J.; Lee, J.; Kim, Y.L.; Park, Y.; Kim, J.K. Arrays of Truncated Cone AlGaN Deep-Ultraviolet Light-Emitting Diodes Facilitating Efficient Outcoupling of in-Plane Emission. ACS Photonics 2016, 3, 2030–2034. [Google Scholar] [CrossRef]
- Wierer, J.J.; Allerman, A.A.; Montaño, I.; Moseley, M.W. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes. Appl. Phys. Lett. 2014, 105, 061106. [Google Scholar] [CrossRef]
- Lee, J.; Seong, T.Y.; Amano, H. Oblique-Angle Deposited SiO2/Al Omnidirectional Reflector for Enhancing the Performance of AlGaN-Based Ultraviolet Light-Emitting Diode. ECS J. Solid State Sci. Technol. 2020, 9, 026005. [Google Scholar] [CrossRef]
- Maeda, N.; Yun, J.; Jo, M.; Hirayama, H. Enhancing the light-extraction efficiency of AlGaN deep-ultraviolet light-emitting diodes using highly reflective Ni/Mg and Rh as p-type electrodes. Jpn. J. Appl. Phys. 2018, 57, 04FH08. [Google Scholar] [CrossRef]
- Maeda, N.; Jo, M.; Hirayama, H. Improving the Efficiency of AlGaN Deep-UV LEDs by Using Highly Reflective Ni/Al p-Type Electrodes. Phys. Status Solidi A 2018, 215, 1700435. [Google Scholar] [CrossRef]
- Takano, T.; Mino, T.; Sakai, J.; Noguchi, N.; Tsubaki, K.; Hirayama, H. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 2017, 10, 031002. [Google Scholar] [CrossRef]
- Khan, M.A.; Maeda, N.; Jo, M.; Akamatsu, Y.; Tanabe, R.; Yamada, Y.; Hirayama, H. 13 mW operation of a 295–310 nm AlGaN UV-B LED with a p-AlGaN transparent contact layer for real world applications. J. Mater. Chem. C 2019, 7, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Chen, Q.; Zhang, S.; Long, H.; Dai, J.; Sun, H.; Chen, C. Enhanced Light Extraction Efficiency of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Incorporating High-Reflective n-Type Electrode Made of Cr/Al. IEEE Trans. Electron Devices 2019, 66, 2992–2996. [Google Scholar] [CrossRef]
- Fayisa, G.B.; Lee, J.W.; Kim, J.; Kim, Y.; Park, Y.; Kim, J.K. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 2017, 56, 092101. [Google Scholar] [CrossRef]
- Zhang, G.; Shao, H.; Zhang, M.; Zhao, Z.; Chu, C.; Tian, K.; Fan, C.; Zhang, Y.; Zhang, Z.H. Enhancing the light extraction efficiency for AlGaN-based DUV LEDs with a laterally over-etched p-GaN layer at the top of truncated cones. Opt. Express 2021, 29, 30532–30542. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Li, K.; Kong, F.; Zhao, J.; Liu, M. Analysis on the effect of amorphous photonic crystals on light extraction efficiency enhancement for GaN-based thin-film-flip-chip light-emitting diodes. Opt. Commun. 2016, 367, 72–79. [Google Scholar] [CrossRef]
- Pernot, C.; Kim, M.; Fukahori, S.; Inazu, T.; Fujita, T.; Nagasawa, Y.; Hirano, A.; Ippommatsu, M.; Iwaya, M.; Kamiyama, S. Improved Efficiency of 255-280 nm AlGaN-Based Light-Emitting Diodes. Appl. Phys. Express 2010, 3, 061004. [Google Scholar] [CrossRef]
- Inoue, S.I.; Tamari, N.; Taniguchi, M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett. 2017, 110, 141106. [Google Scholar] [CrossRef] [Green Version]
- Liang, R.; Dai, J.; Xu, L.; He, J.; Wang, S.; Peng, Y.; Wang, H.; Ye, L.; Chen, C. High Light Extraction Efficiency of Deep Ultraviolet LEDs Enhanced Using Nanolens Arrays. IEEE Trans. Electron Devices 2018, 65, 2498–2503. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.; Park, J.; Schubert, E.; Kim, J.; Lee, J.; Kim, Y.; Park, Y.; Kim, J.K. An elegant route to overcome fundamentally-limited light extraction in AlGaN deep-ultraviolet light-emitting diodes: Preferential outcoupling of strong in-plane emission. Sci. Rep. 2016, 6, 22537. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ooi, Y.; Islam, S.M.; Verma, J.; Xing, H.; Jena, D.; Zhang, J. Physics and polarization characteristics of 298 nm AlN-delta-GaN quantum well ultraviolet light-emitting diodes. Appl. Phys. Lett. 2017, 110, 071103. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.M.; Lee, K.; Verma, J.; Protasenko, V.; Rouvimov, S.; Bharadwaj, S.; Xing, H.; Jena, D. MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Appl. Phys. Lett. 2017, 110, 041108. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, L.; Zhao, Z.; Tian, K.; Chu, C.; Zheng, Q.; Zhang, Y.; Li, Q.; Zhang, Z.H. Different scattering effect of nano-patterned sapphire substrate for TM- and TE-polarized light emitted from AlGaN-based deep ultraviolet light-emitting diodes. Opt. Mater. Express 2021, 11, 729–739. [Google Scholar] [CrossRef]
- Kim, J.S.; Yang, S.C.; Bae, B.S. Thermally Stable Transparent Sol-Gel Based Siloxane Hybrid Material with High Refractive Index for Light Emitting Diode (LED) Encapsulation. Chem. Mater. 2010, 22, 3549–3555. [Google Scholar] [CrossRef]
- Tong, L.; Feng, Y.; Sun, X.; Han, Y.; Jiao, D.; Tan, X. High refractive index adamantane-based silicone resins for the encapsulation of light-emitting diodes. Polym. Adv. Technol. 2018, 29, 2245–2252. [Google Scholar] [CrossRef]
- Kashima, Y.; Maeda, N.; Matsuura, E.; Jo, M.; Iwai, T.; Morita, T.; Kokubo, M.; Tashiro, T.; Kamimura, R.; Osada, Y.; et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer. Appl. Phys. Express 2017, 11, 012101. [Google Scholar] [CrossRef]
- Lee, T.H.; Park, T.H.; Shin, H.W.; Maeda, N.; Jo, M.; Hirayama, H.; Kim, B.H.; Kim, T.G. Smart Wide-Bandgap Omnidirectional Reflector as an Effective Hole-Injection Electrode for Deep-UV Light-Emitting Diodes. Adv. Opt. Mater. 2019, 8, 1901430. [Google Scholar] [CrossRef]
- Griffin, P.; Zhu, T.; Oliver, R. Porous AlGaN-Based Ultraviolet Distributed Bragg Reflectors. Materials 2018, 11, 1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Liu, Y.; Zhang, J.; Zhang, Y.; Xu, L.; Chen, Q.; Dai, J.; Chen, C. Optical polarization characteristics and light extraction behavior of deep-ultraviolet LED flip-chip with full-spatial omnidirectional reflector system. Opt. Express 2019, 27, A1601–A1614. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.; Guo, C.; Zhao, Y.; Chen, Q.; Deng, L.; Zheng, Z.; Tan, S.; Guo, W.; Dai, J.; Wu, F.; et al. Nanoporous AlGaN Distributed Bragg Reflectors for Deep Ultraviolet Emission. ACS Appl. Nano Mater. 2022, 5, 10081–10089. [Google Scholar] [CrossRef]
- Ichikawa, M.; Fujioka, A.; Kosugi, T.; Endo, S.; Sagawa, H.; Tamaki, H.; Mukai, T.; Uomoto, M.; Shimatsu, T. High-output-power deep ultraviolet light-emitting diode assembly using direct bonding. Appl. Phys. Express 2016, 9, 072101. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, X.; Liang, R.; Cheng, H.; Chen, M. Enhanced Light Extraction From DUV-LEDs by AlN-Doped Fluoropolymer Encapsulation. IEEE Photon. Technol. Lett. 2017, 29, 1151–1154. [Google Scholar] [CrossRef]
- Kang, C.-Y.; Lin, C.-H.; Wu, T.; Lee, P.-T.; Chen, Z.; Kuo, H.-C. A Novel Liquid Packaging Structure of Deep-Ultraviolet Light-Emitting Diodes to Enhance the Light-Extraction Efficiency. Crystals 2019, 9, 203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wu, F.; Wang, S.; Zhang, H.; Zhang, Y.; Xu, L.; Dai, J.; Chen, C. Enhanced Wall-Plug Efficiency in AlGaN-Based Deep-Ultraviolet LED via a Novel Honeycomb Hole-Shaped Structure. IEEE Trans. Electron Devices 2019, 66, 2997–3002. [Google Scholar] [CrossRef]
- Chen, Q.; Dai, J.; Li, X.; Gao, Y.; Long, H.; Zhang, Z.H.; Chen, C.; Kuo, H. Enhanced Optical Performance of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes by Electrode Patterns Design. IEEE Electron Device Lett. 2019, 40, 1925–1928. [Google Scholar] [CrossRef]
- Shao, H.; Che, J.; Kou, J.; Chu, C.; Tian, K.; Zhang, Y.; Bi, W.; Zhang, Z.H. Metal-insulator-semiconductor structure for deep-ultraviolet light-emitting diodes to increase the electron injection in the cathode region. Superlattices Microstruct. 2020, 140, 106467. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Kang, Q.; Zhang, Y.; Zhang, X.; Zhang, Z. Research Progress of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. Micromachines 2023, 14, 844. https://doi.org/10.3390/mi14040844
Xu R, Kang Q, Zhang Y, Zhang X, Zhang Z. Research Progress of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. Micromachines. 2023; 14(4):844. https://doi.org/10.3390/mi14040844
Chicago/Turabian StyleXu, Ruiqiang, Qiushi Kang, Youwei Zhang, Xiaoli Zhang, and Zihui Zhang. 2023. "Research Progress of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes" Micromachines 14, no. 4: 844. https://doi.org/10.3390/mi14040844
APA StyleXu, R., Kang, Q., Zhang, Y., Zhang, X., & Zhang, Z. (2023). Research Progress of AlGaN-Based Deep Ultraviolet Light-Emitting Diodes. Micromachines, 14(4), 844. https://doi.org/10.3390/mi14040844