# Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Background

#### 2.1. Mechanical Design

#### 2.2. Experimental Equipment

## 3. Causes of Starting Error

#### 3.1. Start-Up Error Characteristic 1

#### 3.2. Start-Up Error Characteristic 2

#### 3.2.1. Causes of Voltage-Affected Starting Error

## 4. Modeling

#### 4.1. CPI Model

#### 4.2. Start-Up Error Characteristic 3

#### 4.3. Data-Separated Prandtl-Ishlinskii Model

_{1}, a

_{2}, a

_{3}… a

_{x}. The displacement value of the data collected in the second cycle is b

_{1}, b

_{2}, b

_{3}… b

_{x}. The displacement value of the data collected in the third cycle is c

_{1}, c

_{2}, c

_{3}… c

_{x}. The displacement value of the data collected in the nth cycle is n

_{1}, n

_{2}, n

_{3}… n

_{x}.

_{1}+ c

_{1}+…+ n

_{1})/(n − 1), (b

_{2}+ c

_{2}+…+ n

_{2})/(n − 1), (b

_{3}+ c

_{3}+…+ n

_{3})/(n − 1), … (b

_{n}+ c

_{n}+…+ n

_{n})/(n − 1). After averaging, the new displacement value of the second cycle is d

_{1}, d

_{2}, d

_{3}… d

_{x}. As shown in Figure 10, the voltage-displacement curves of the first cycle data and the new second cycle data obtained from the data reclassification process are presented.

#### 4.4. Compensated Control and DSPI Inverse Model

## 5. Experiments and Discussion

#### 5.1. Results of the DSPI Model

#### 5.2. Results of the DSPI Inverse Model

#### 5.3. Model Comparison

- Adjust the laser interferometer. Connect the computer, laser interferometer, and controller. The relevant software is opened and waiting for a measurement;
- Using the software to make the controller CPI inverse model loaded with the control voltage. The experimental voltage obtained by the CPI inverse model was used for experiment one, and the displacement was measured and recorded at equal time intervals using a laser interferometer. The experimental results are shown in Figure 21;
- Experiment 2 is performed according to the voltage obtained from the DSPI inverse model, and the displacement is measured and recorded at equal time intervals using a laser interferometer. The time interval described in step 3 is kept the same as in 2;
- Change the time interval to complete multiple measurements;
- Check the apparatus and shut it down, and process the final experimental data.

#### 5.4. Another Experimental Comparison

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Park, G.; Bement, M.T.; Hartman, D.A.; Smith, R.E.; Farrar, C.R. The use of active materials for machining processes: A review. Int. J. Mach. Tools Manuf.
**2007**, 47, 2189–2206. [Google Scholar] [CrossRef] - Zhang, X.; Xu, Q. Design and development of a new 3-DOF active-type constant-force compliant parallel stage. Mech. Mach. Theory
**2019**, 140, 654–665. [Google Scholar] [CrossRef] - Yong, Y.K.; Fleming, A.J.; Moheimani, S.O. A Novel Piezoelectric Strain Sensor for Simultaneous Damping and Tracking Control of a High-Speed Nanopositioner. IEEE/ASME Trans. Mechatron.
**2013**, 18, 1113–1121. [Google Scholar] [CrossRef] - Ma, J.; Tian, L.; Li, Y.; Yang, Z.; Cui, Y.; Chu, J. Hysteresis compensation of piezoelectric deformable mirror based on Prandtl–Ishlinskii model. Opt. Commun.
**2018**, 416, 94–99. [Google Scholar] [CrossRef] - Woody, S.; Smith, S. Design and performance of a dual drive system for tip-tilt angular control of a 300mm diameter mirror. Mechatronics
**2006**, 16, 389–397. [Google Scholar] [CrossRef] - Tao, Y.; Li, H.; Zhu, L. Hysteresis modeling with frequency-separation-based Gaussian process and its application to sinusoidal scanning for fast imaging of atomic force microscope. Sens. Actuators A Phys.
**2020**, 311, 112070. [Google Scholar] [CrossRef] - Ling, J.; Rakotondrabe, M.; Feng, Z.; Ming, M.; Xiao, X. A Robust Resonant Controller for High-Speed Scanning of Nanopositioners: Design and Implementation. IEEE Trans. Control Syst. Technol.
**2020**, 28, 1116–1123. [Google Scholar] [CrossRef] [Green Version] - Deng, J.; Zhou, H.; Dong, J.; Cohen, P. Three-Dimensional Nanomolds Fabrication for Nanoimprint Lithography. Procedia Manuf.
**2019**, 34, 228–232. [Google Scholar] [CrossRef] - Chi, Z.; Xu, Q. Precision control of piezoelectric actuator using fuzzy feedback control with inverse hysteresis compensation. In Proceedings of the 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xi’an, China, 7–11 April 2015; pp. 219–224. [Google Scholar]
- Brokate, M.; Sprekels, J. Hysteresis and Phase Transitions; Springer: Berlin, Germany, 1996. [Google Scholar]
- Al Janaideh, M.; Rakotondrabe, M.; Al-Darabsah, I.; Aljanaideh, O. Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuator. Control. Eng. Pract.
**2018**, 72, 29–41. [Google Scholar] [CrossRef] - Ge, P.; Jouaneh, M. Generalized preisach model for hysteresis nonlinearity of piezoceramic actuators. Precis. Eng.
**1997**, 20, 99–111. [Google Scholar] [CrossRef] - Malczyk, R.; Izydorczyk, J. The frequency-dependent Jiles–Atherton hysteresis model. Phys. B Condens. Matter.
**2015**, 463, 68–75. [Google Scholar] [CrossRef] - Liu, Y.; Liu, H.; Wu, H.; Zou, D. Modelling and compensation of hysteresis in piezoelectric actuators based on Maxwell approach. Electron. Lett.
**2016**, 52, 188–190. [Google Scholar] [CrossRef] - Ming, M.; Feng, Z.; Ling, J.; Xiao, X.H. Hysteresis modelling and feedforward compensation of piezoelectric nanopositioning stage with a modified Bouc–Wen model. Micro Nano Lett.
**2018**, 13, 1170–1174. [Google Scholar] [CrossRef] - Chen, Y.; Shen, X.; Li, J.; Chen, J. Nonlinear hysteresis identification and compensation based on the discrete Preisach model of an aircraft morphing wing device manipulated by an SMA actuator. Chin. J. Aeronaut.
**2019**, 32, 1040–1050. [Google Scholar] [CrossRef] - Delibas, B.; Arockiarajan, A.; Seemann, W. Rate dependent properties of perovskite type tetragonal piezoelectric materials using micromechanical model. Int. J. Solids Struct.
**2006**, 43, 697–712. [Google Scholar] [CrossRef] [Green Version] - Song, X.; Duggen, L.; Lassen, B.; Mangeot, C. Modeling and identification of hysteresis with modified Preisach model in piezoelectric actuator. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1538–1543. [Google Scholar]
- Lin, C.; Lin, P. Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model. Comput. Math. Appl.
**2012**, 64, 766–787. [Google Scholar] [CrossRef] [Green Version] - Wang, G.; Chen, G.; Bai, F. Modeling and identification of asymmetric Bouc–Wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm. Sens. Actuators A Phys.
**2015**, 235, 105–118. [Google Scholar] [CrossRef] - Yang, L.; Zhao, Z.; Zhang, Y.; Li, D. Rate-Dependent Modeling of Piezoelectric Actuators for Nano Manipulation Based on Fractional Hammerstein Model. Micromachines
**2022**, 13, 42. [Google Scholar] [CrossRef] - Wang, W.; Zhang, J.; Xu, M.; Chen, G. Hysteresis Characteristics and MPI Compensation of Two-Dimensional Piezoelectric Positioning Stage. Micromachines
**2022**, 13, 321. [Google Scholar] [CrossRef] - Ko, Y.R.; Hwang, Y.; Chae, M.; Kim, T.H. Direct identification of generalized Prandtl-Ishlinskii model inversion for asymmetric hysteresis compensation. ISA Trans.
**2017**, 70, 209–218. [Google Scholar] [CrossRef] - Al Janaideh, M.; Rakotondrabe, M.; Aljanaideh, O. Further Results on Hysteresis Compensation of Smart Micropositioning Systems With the Inverse Prandtl-Ishlinskii Compensator. IEEE Trans. Control. Syst. Technol.
**2016**, 24, 428–439. [Google Scholar] [CrossRef] - Zhu, W.; Liu, F.; Yang, F.; Rui, X. Tracking control of a 3-dimensional piezo-driven micro-positioning system using a dynamic Prandtl–Ishlinskii model. J. Intell. Mater. Syst. Struct.
**2022**, 33, 1231–1243. [Google Scholar] [CrossRef] - Kuhnen, K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. Eur. J. Control.
**2003**, 9, 407–417. [Google Scholar] [CrossRef] - Stefanski, F.; Minorowicz, B.; Persson, J.; Plummer, A.; Bowen, C. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl–Ishlinskii hysteresis model. Mech. Syst. Signal Process.
**2017**, 82, 412–431. [Google Scholar] [CrossRef] [Green Version] - Savoie, M.; Shan, J. Temperature-dependent asymmetric Prandtl-Ishlinskii hysteresis model for piezoelectric actuators. Smart Mater. Struct.
**2022**, 31, 55022. [Google Scholar] [CrossRef] - Cao, K.; Li, R.; Du, H.; Ma, J. Modeling and compensation of symmetric hysteresis in piezoceramic actuators. Results Phys.
**2019**, 13, 102095. [Google Scholar] [CrossRef] - Hii, K.; Vallance, R.R.; Pinar Mengüç, M. Design, operation, and motion characteristics of a precise piezoelectric linear motor. Precis. Eng.
**2010**, 34, 231–241. [Google Scholar] [CrossRef] - Yang, S.; Chen, W.; Liu, J.; Chen, W. Design, analysis and testing of a novel decoupled 2-DOF flexure-based micropositioning stage. J. Micromech. Microeng.
**2017**, 27, 95010. [Google Scholar] [CrossRef] - Huang, X.; Zeng, J.; Ruan, X.; Zheng, L.; Li, G. Structure, electrical, and thermal expansion properties of PZnTe-PZT ternary system piezoelectric ceramics. J. Am. Ceram. Soc.
**2018**, 101, 274–282. [Google Scholar] [CrossRef] - Lancée, C.T.; Souquet, J.; Ohigashi, H.; Bom, N. Transducers in medical ultrasound: Part One. Ferro-electric ceramics versus polymer piezoelectric materials. Ultrasonics
**1985**, 23, 138. [Google Scholar] [CrossRef] - Chi, Z.Q.; Xu, Q.S. Recent advances in the control of piezoelectric actuators. Int. J. Adv. Rob. Syst.
**2014**, 11, 182. [Google Scholar] [CrossRef] [Green Version] - Sun, Z.; Song, B.; Xi, N.; Yang, R.; Chen, L.; Cheng, Y.; Bi, S.; Li, C.; Hao, L. Systematic Hysteresis compensator design based on Extended Unparallel Prandtl-Ishlinskii model for SPM imaging rectification. IFAC—Pap. Online
**2017**, 50, 10901–10906. [Google Scholar] [CrossRef] - An, D.; Yang, Y.; Xu, Y.; Shao, M.; Shi, J.; Yue, G. Compensation of Hysteresis in the Piezoelectric Nanopositioning Stage under Reciprocating Linear Voltage Based on a Mark-Segmented PI Model. Micromachines
**2020**, 11, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**Three-dimensional schematic: (

**a**) one-degree-of-freedom nanopositioning platform; (

**b**) piezoelectric ceramic stacking.

**Figure 2.**Nano platform experimental system: (

**a**) system schematic diagram; (

**b**) system build diagram.

**Figure 3.**Schematic diagram of the change of electric domains in piezoelectric ceramics during the polarization process: (

**a**) before polarization; (

**b**) during polarization; (

**c**) after polarization.

**Figure 4.**Experimental loading voltage: (

**a**) first cycle voltage after start-up; (

**b**) the first three cycles of voltage; (

**c**) the first seven cycles of voltage.

**Figure 5.**Experimental voltage-displacement curves: (

**a**) voltage-displacement curve of the first cycle after start-up; (

**b**) voltage-displacement curve of the first three cycles; (

**c**) voltage-displacement curve of the first seven cycles.

**Figure 12.**Voltage–hysteresis tangent slope plots: (

**a**) cycle 1 v-s(v) plot; (

**b**) cycle 1 slope data separation plot.

**Figure 13.**Voltage–hysteresis tangent slope plots: (

**a**) new second cycle v-s(v) plot; (

**b**) new second cycle slope data separation plot.

**Figure 15.**DSPI model: (

**a**) modeling of the first cycle data hysteresis characteristics; (

**b**) local enlargement.

**Figure 16.**DSPI model: (

**a**) modeling of the new second cycle data hysteresis characteristics; (

**b**) local enlargement.

**Figure 17.**DSPI model: (

**a**) modeling of the hysteresis characteristics after merging the first and new second cycle data; (

**b**) local enlargement.

**Figure 18.**DSPI inverse model: (

**a**) the first cycle; (

**b**) the new second cycle; (

**c**) overall modeling of the DSPI inverse model.

**Figure 21.**Comparison of the compensation control effect between the DSPI and CPI inverse models: (

**a**) CPI inverse model; (

**b**) DSPI inverse model; (

**c**) local enlargement of (

**b**).

**Figure 25.**Time–displacement–error curves of DSPI Model and MSPI Model: (

**a**) overall diagram; (

**b**) local enlargement.

The Given Voltage | Start-Up Error Value |
---|---|

0–150–0 V | 2.117105 μm |

0–100–0 V | 1.411403 μm |

0–50–0 V | 0.827996 μm |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

An, D.; Li, J.; Li, S.; Shao, M.; Wang, W.; Wang, C.; Yang, Y.
Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model. *Micromachines* **2023**, *14*, 742.
https://doi.org/10.3390/mi14040742

**AMA Style**

An D, Li J, Li S, Shao M, Wang W, Wang C, Yang Y.
Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model. *Micromachines*. 2023; 14(4):742.
https://doi.org/10.3390/mi14040742

**Chicago/Turabian Style**

An, Dong, Ji Li, Songhua Li, Meng Shao, Weinan Wang, Chuan Wang, and Yixiao Yang.
2023. "Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model" *Micromachines* 14, no. 4: 742.
https://doi.org/10.3390/mi14040742