Numerical Assessment of a Metal-Insulator-Metal Waveguide-Based Plasmonic Sensor System for the Recognition of Tuberculosis in Blood Plasma
Abstract
:1. Introduction
2. MIM Waveguide-Based Plasmonic Sensor Design
3. Device Optimization
4. Refractive Index Range of Blood Plasma Infected with TB
5. Integration of Dielectric Mode Converters to the Plasmonic Sensor
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maier, S. Plasmonics: The promise of highly integrated optical devices. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1671–1677. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonics: A necessity in the field of sensing-A review (invited). Fiber Integr. Opt. 2021, 40, 14–47. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, A. Additive printing of gold/silver nanostructures towards plasmonic metasurfaces. In Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XX; SPIE: San Diego, CA, USA, 2022. [Google Scholar]
- Butt, M.; Kazanskiy, N.; Khonina, S. Miniaturized design of a 1 × 2 plasmonic demultiplexer based on metal-insulator-metal waveguide for telecommunication wavelengths. Plasmonics 2023, 18, 635–641. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, L.; Swarnakar, S. Design of one-bit magnitude comparator using nonlinear plasmonic waveguide. Plasmonics 2017, 12, 369–375. [Google Scholar] [CrossRef]
- Anwar, R.S.; Ning, H.; Mao, L. Recent advancements in surface plasmon polaritons-plasmonics in subwavelength structures in microwave and terahertz regimes. Digit. Commun. Netw. 2018, 4, 244–257. [Google Scholar] [CrossRef]
- Nanda, R.; Rath, R.; Swarnakar, S.; Kumar, S. Design of all-optical directional coupler using plasmonic MIM waveguide for switching applications. Plasmonics 2022, 17, 2153–2159. [Google Scholar] [CrossRef]
- Weiss, M.; Srivastava, R.; Groger, H.; Lo, P.; Luo, S.-F. A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors. Sens. Actuators A Phys. 1996, 51, 211–217. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Plasmonic refractive index sensor based on M-I-M square ring resonator. In Proceedings of the International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, Pakistan, 12–13 November 2018; pp. 1–4. [Google Scholar]
- Hill, M.T.; Marell, M.; Leong, E.S.; Smalbrugge, B.; Zhu, Y.; Sun, M.; Smit, M.K. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 2009, 17, 11107–11112. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Highly sensitive refractive index sensor based on plasmonic Bow Tie configuration. Photonic Sens. 2020, 10, 223–232. [Google Scholar] [CrossRef]
- Khonina, S.; Kazanskiy, N.; Butt, M.; Kazmierczak, A.; Piramidowicz, R. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt. Express 2021, 29, 16584–16594. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. A compact design of a modified Bragg grating filter based on a metal-insulator-metal waveguide for filtering and temperature sensing applications. Optik 2022, 251, 168466. [Google Scholar] [CrossRef]
- Chao, C.-T.-C.; Chau, Y.-F.C.; Chiang, H.-P. Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects. J. Phys. D Appl. Phys. 2021, 54, 115301. [Google Scholar] [CrossRef]
- Chau, Y.-F.C. Multiple-mode bowtie cavities for refractive index and glucose sensors working in visible and near-infrared wavelength ranges. Plasmonics 2021, 16, 1633–1644. [Google Scholar] [CrossRef]
- Chen, F.; Yang, W. Pressure sensor based on multiple Fano resonance in metal-insulator-metal waveguide coupled resonator structure. J. Opt. Soc. Am. B 2022, 39, 1716–1722. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Y.; Ding, J.; Yuan, Y.; Tian, Z.; Wang, X. Independently tunable dual resonant dip refractive index sensor based on metal-insulator-metal waveguide with Q-shaped resonant cavity. Chin. Phys. B 2022, 31, 034211. [Google Scholar] [CrossRef]
- Bahri, H.; Hocini, A.; Bensalah, H.; Mouetsi, S.; Ingebrandt, S.; Pachauri, V.; Hamani, M. A high-sensitivity biosensor based on a metal-insulator-metal diamond resonator and application for biochemical and environment detections. Optik 2022, 271, 170083. [Google Scholar] [CrossRef]
- Taghipour, A.; Heidarzadeh, H. Design and analysis of highly sensitive LSPR-based metal-insulator-metal nano-discs as a biosensor for fast detection of SARS-CoV-2. Photonics 2022, 9, 542. [Google Scholar] [CrossRef]
- Butt, M.; Khonina, S.; Kazanskiy, N. Simple and Improved Plasmonic Sensor Configuration Established on MIM Waveguide for Enhanced Sensing Performance. Plasmonics 2022, 17, 1305–1314. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Liu, X.; Rohimah, S.; Tian, H.; Qi, D. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 2021, 482, 126563. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, M. Refractive index sensor based on the symmetric MIM waveguide structure. J. Electron. Mater. 2019, 48, 1005–1010. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, M.; Wang, Y.; Zhao, R.; Yan, S. Fano Resonance in an Asymmetric MIM Waveguide Structure and Its Application in a Refractive Index Nanosensor. Sensors 2019, 19, 791. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Yan, S.; Ren, Y.; Zhang, X.; Li, T.; Wu, X.; Shen, L.; Hua, E. A MIM waveguide structure of a high-performance refractive index and temperature sensor based on Fano resonance. Appl. Sci. 2021, 11, 10629. [Google Scholar] [CrossRef]
- Butt, M. Metal-insulator-metal waveguide-based plasmonic sensors: Fantasy or truth—A critical review. Appl. Res. 2022, e202200099. [Google Scholar] [CrossRef]
- Khan, I.H.; Ravindran, R.; Krishnan, V.V.; Awan, I.N.; Rizvi, S.K.; Saqib, M.A.; Luciw, P.A. Plasma antibody profiles as diagnostic biomarkers for tuberculosis. Clin. Vaccine Immunol. 2011, 18, 2148–2153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakic, A.D.; Elazar, J.; Majewski, M. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [CrossRef] [PubMed]
- Ocola, L.; Rue, C.; Maas, D. High-resolution direct-write patterning using focused ion beams. MRS Bull. 2014, 39, 336–341. [Google Scholar] [CrossRef]
- Broers, A.N. Resolution limits for electron-beam lithography. IBM J. Res. Dev. 1988, 32, 502–513. [Google Scholar] [CrossRef]
- Zhan, S.; Peng, Y.; He, Z.; Li, B.; Chen, Z.; Xu, H.; Li, H. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci. Rep. 2016, 6, 22428. [Google Scholar] [CrossRef] [Green Version]
- Salah, H.; Hocini, A.; Temmar, M.; Khedrouche, D. Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor. Chin. J. Phys. 2019, 61, 86–97. [Google Scholar] [CrossRef]
- Reddy, N.; Kothandan, D.; Lingam, S.; Ahmad, A. A study on refractive index of plasma of blood of patients suffering from Tuberculosis. Int. J. Innov. Technol. Creat. Eng. 2012, 2, 23–25. [Google Scholar]
- Butt, M.A.; Kazanskiy, N.L. Nanoblocks embedded in L-shaped nanocavity of a plasmonic sensor for best sensor performance. Opt. Appl. 2021, 51, 109–120. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys. E Low-Dimens. Syst. Nanostructures 2020, 117, 113798. [Google Scholar] [CrossRef]
- Blau, Y.; Gilad, T.; Hanein, Y.; Boag, A.; Scheuer, J. High efficiency coupling to metal-insulator-metal plasmonic waveguides. Opt. Express 2022, 30, 13757. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Kazanskiy, N.; Khonina, S. Tapered waveguide mode converters for metal-insulator-metal waveguide plasmonic sensors. Measurement 2023, 211, 112601. [Google Scholar] [CrossRef]
Geometric Variables | Value |
---|---|
W | 50 nm (fixed) |
g | 10 nm to 50 nm |
g1 | 10 nm, 25 nm, 35 nm, 50 nm, 75 nm |
R | 150 nm to 187.5 nm |
L | 600 nm to 750 nm |
Sample | Refractive Index Value |
---|---|
TB-infected | 1.343 |
TB-infected | 1.344 |
TB-infected | 1.345 |
TB-infected | 1.346 |
TB-infected | 1.347 |
TB-infected | 1.348 |
TB-infected | 1.349 |
TB-infected | 1.350 |
Normal | 1.351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, M.A. Numerical Assessment of a Metal-Insulator-Metal Waveguide-Based Plasmonic Sensor System for the Recognition of Tuberculosis in Blood Plasma. Micromachines 2023, 14, 729. https://doi.org/10.3390/mi14040729
Butt MA. Numerical Assessment of a Metal-Insulator-Metal Waveguide-Based Plasmonic Sensor System for the Recognition of Tuberculosis in Blood Plasma. Micromachines. 2023; 14(4):729. https://doi.org/10.3390/mi14040729
Chicago/Turabian StyleButt, Muhammad A. 2023. "Numerical Assessment of a Metal-Insulator-Metal Waveguide-Based Plasmonic Sensor System for the Recognition of Tuberculosis in Blood Plasma" Micromachines 14, no. 4: 729. https://doi.org/10.3390/mi14040729
APA StyleButt, M. A. (2023). Numerical Assessment of a Metal-Insulator-Metal Waveguide-Based Plasmonic Sensor System for the Recognition of Tuberculosis in Blood Plasma. Micromachines, 14(4), 729. https://doi.org/10.3390/mi14040729