Room-Temperature CMOS Monolithic Resonant Triple-Band Terahertz Thermal Detector
Abstract
:1. Introduction
2. Detector Structure and Operation Principle
2.1. Design of Octagonal Ring Antenna
2.2. Design of the PTAT Sensor
2.3. Co-Design of Antenna and PTAT Sensor
3. Experiment and Discussions
3.1. Responsivity
3.2. NEP
3.3. Thermal Time Constant
3.4. Performance Summary and Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malhotra, I.; Jha, K.R.; Singh, G. Terahertz antenna technology for imaging applications: A technical review. Int. J. Microw. Wirel. Technol. 2018, 10, 271–290. [Google Scholar] [CrossRef]
- Yu, C.; Fan, S.; Sun, Y.; Pickwell-MacPherson, E. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quant. Imag. Med. Surg. 2012, 2, 33–45. [Google Scholar]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.P.; Liu, Y.; Fu, W.; Luo, Y. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- Kemp, M.C. Explosives detection by terahertz spectroscopy-a bridge too far? IEEE Trans. Terahertz Sci. Technol. 2011, 1, 282–292. [Google Scholar] [CrossRef]
- Danciu, M.; Alexa, T.; Stefanescu, C.; Dodi, G.; Tamba, B.I.; Mihai, C.T.; Stanciu, G.D.; Luca, A.; Spiridon, I.A.; Ungureanu, L.B.; et al. Terahertz Spectroscopy and Imaging: A Cutting-Edge Method for Diagnosing Digestive Cancers. Materials 2019, 12, 1519. [Google Scholar] [CrossRef] [Green Version]
- Takida, Y.; Nawata, K.; Minamide, H. Security screening system based on terahertz-wave spectroscopic gas detection. Opt. Express 2021, 29, 2529–2537. [Google Scholar] [CrossRef]
- Karaliūnas, M.; Nasser, K.E.; Urbanowicz, A.; Kašalynas, I.; Bražinskienė, D.; Asadauskas, S.; Valušis, G. Non-destructive inspection of food and technical oils by terahertz spectroscopy. Sci. Rep. 2018, 8, 18025. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Kim, D.; Solanki, S.; Kwon, J.H.; Kim, M.; Jeon, S.; Ko, Y.C.; Lee, I. Design and Performance Analysis of THz Wireless Communication Systems for Chip-to-Chip and Personal Area Networks Applications. IEEE J. Sel. Area. Commun. 2021, 39, 1785–1796. [Google Scholar] [CrossRef]
- Xu, H.; Lu, H.; Wang, Z.; Liu, J.; Wang, W. The System Design and Preliminary Tests of the THz Atmospheric Limb Sounder (TALIS). IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Bower, G.C.; Dexter, J.; Asada, K.; Brinkerink, C.D.; Falcke, H.; Ho, P.; Inoue, M.; Markoff, S.; Marrone, D.P.; Matsushita, S.; et al. ALMA observations of the terahertz spectrum of sagittarius A*. Astrophys. J. 2019, 881, L2. [Google Scholar] [CrossRef]
- Zhou, D.; Hou, L.; Xie, W.; Zang, W.; Lu, B.; Chen, J.; Wu, P. Practical dual-band terahertz imaging system. Appl. Opt. 2017, 56, 3148–3154. [Google Scholar] [CrossRef]
- Dabironezare, S.O.; Hassel, J.; Gandini, E.; Gronberg, L.; Sipola, H.; Vesterinen, V.; Llombart, N. A dual-band focal plane array of kinetic inductance bolometers based on frequency-selective absorbers. IEEE Trans. Terahertz Sci. Technol. 2018, 8, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Paradis, S.; Bui, T.; Almasri, M. Design of Dual-Band Uncooled Infrared Microbolometer. IEEE Sens. J. 2011, 11, 167–175. [Google Scholar] [CrossRef]
- Statnikov, K.; Grzyb, J.; Heinemann, B.; Pfeiffer, U.R. 160-GHz to 1-THz multi-color active imaging with a lens-coupled SiGe HBT chip-set. IEEE Trans. Microw. Theory Tech. 2015, 63, 520–532. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Hong, J.P. A High Fundamental Frequency Sub-THz CMOS Oscillator With a Capacitive Load Reduction Circuit. IEEE Trans. Microw. Theory Tech. 2020, 68, 2655–2667. [Google Scholar] [CrossRef]
- Huang, R.; Ji, X.; Liao, Y.; Peng, J.; Wang, K.; Xu, Y.; Yan, F. Dual-frequency CMOS terahertz detector with silicon-based plasmonic antenna. Opt. Express 2019, 27, 23250–23261. [Google Scholar] [CrossRef]
- Xu, L.J.; Guan, J.N.; Bai, X.; Li, Q.; Mao, H.P. A novel CMOS multi-band THz detector with embedded ring antenna. J. Infrared Millim. Terahertz Waves 2017, 38, 1189–1205. [Google Scholar] [CrossRef]
- Khatib, M.; Perenzoni, M. Response optimization of antenna-coupled FET detectors for 0.85-to-1-THz imaging. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 903–905. [Google Scholar] [CrossRef]
- Boppel, S.; Lisauskas, A.; Mundt, M.; Seliuta, D.; Minkevičius, L.; Kašalynas, I.; Valušis, G.; Mittendorff, M.; Winnerl, S.; Krozer, V.; et al. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3THz. IEEE Trans. Microw. Theory Tech. 2012, 60, 3834–3843. [Google Scholar] [CrossRef]
- Bauer, M.; Venckevicius, R.; Kasalynas, I.; Boppel, S.; Mundt, M.; Minkevicius, L.; Lisauskas, A.; Valusis, G.; Krozer, V.; Roskos, H.G. Antenna-coupled field-effect transistors for multi-spectral terahertz imaging up to 4.25THz. Opt. Express 2014, 22, 19235–19241. [Google Scholar] [CrossRef]
- Hillger, P.; Grzyb, J.; Jain, R.; Pfeiffer, U.R. Terahertz Imaging and Sensing Applications with Silicon-Based Technologies. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 1–19. [Google Scholar] [CrossRef]
- Grossman, E.; Dietlein, C.; Ala-Laurinaho, J.; Leivo, M.; Gronberg, L.; Gronholm, M.; Lappalainen, P.; Rautiainen, A.; Tamminen, A.; Luukanen, A. Passive terahertz camera for standoff security screening. Appl. Opt. 2010, 49, E106–E120. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Simoens, F.; Ouvrier-Buffet, J.; Meilhan, J.; Coutaz, J.L. Broadband THz uncooled antenna-coupled microbolometer array-electromagnetic design, simulations and measurements. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 299–305. [Google Scholar] [CrossRef]
- Chen, F.; Yang, J.; Li, Z. Modeling of an uncooled CMOS THz thermal detector with frequency-selective dipole antenna and PTAT temperature sensor. IEEE Sens. J. 2018, 18, 1483–1492. [Google Scholar] [CrossRef]
- Kuzmin, L.S.; Sobolev, A.S.; Beiranvand, B. Wideband Double-Polarized Array of Cold-Electron Bolometers for OLIMPO Balloon Telescope. IEEE Trans. Antennas Propagat. 2021, 69, 1427–1432. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S. Novel CMOS-based multi-band terahertz detector for passive imaging. Semi. Sci. Technol. 2022, 37, 055014. [Google Scholar] [CrossRef]
- Wang, X. Uncooled CMOS Integrated Triple-Band Terahertz Thermal Detector Comprising of Metamaterial Absorber and PTAT Sensor. IEEE Access 2020, 8, 114501–114508. [Google Scholar] [CrossRef]
- Wang, X. Monolithic resonant CMOS fully integrated triple-band THz thermal detector. Opt. Express 2020, 28, 22630–22641. [Google Scholar] [CrossRef]
- Corcos, D.; Kaminski, N.; Shumaker, E.; Markish, O.; Elad, D.; Morf, T.; Drechsler, U.; Saha, W.T.S.; Kull, L.; Wood, K.; et al. Antenna-coupled MOSFET bolometers for uncooled THz sensing. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 902–913. [Google Scholar] [CrossRef]
- Li, S.; Gao, J.; Cao, X.; Li, W.; Zhang, Z.; Zhang, D. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. J. Appl. Phys. 2014, 116, 207402. [Google Scholar] [CrossRef]
- Golda, A.; Kos, A. Analysis and design of PTAT temperature sensor in digital CMOS VLSI circuits. In Proceedings of the International Conference Mixed Design of Integrated Circuits and System, Gdynia, Poland, 22–24 June 2006; pp. 415–420. [Google Scholar]
- Li, Y. The Research and Design of Low Power Low Offset Digital Thermometer. Master Thesis, Hunan University, Changsha, China, 2006. [Google Scholar]
- Razavi, B. Design of Analog CMOS Integrated Circuits; Xi‘an Jiaotong University Press: Xi‘an, China, 2003. [Google Scholar]
- Liu, M.C.; Hsiao, S.Y. PTAT Sensor and Temperature Sensing Method Thereof. U.S. Patent US7915947B2, 29 March 2011. [Google Scholar]
- Liu, Z.; Liu, L.; Yang, J.; Wu, N. A CMOS fully integrated 860-GHz terahertz sensor. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 455–465. [Google Scholar] [CrossRef]
- Carranza, I.E.; Grant, J.; Gough, J.; Cumming, D.R.S. Metamaterial-Based Terahertz Imaging. IEEE Trans. THz Sci. Technol. 2015, 5, 892–901. [Google Scholar] [CrossRef] [Green Version]
Ref. No | Frequency (THz) | Structure | Technology | Rv (V/W) | NEP (W/√Hz) |
---|---|---|---|---|---|
[26] | 0.546, 0.688, 0.78, 0.912 | Antenna + NMOS sensor | 0.18 μm CMOS | 5.5 k, 5.3 k, 3 k, 5 k | 0.94 p, 0.98 p, 1.72 p, 1.03 p |
[24] | 1, 2.9, 28.3 | Dipole antenna + PTAT sensor | 0.18 μm CMOS | 18 *, 18.9, 18.6 * | 1.7 μ * |
[27] | 0.91, 2.58, 4.3 | Metamaterial absorber + PTAT sensor | 55 nm CMOS | 33.4, 47.9, 61.11 * | 1.49, 1.88, 1.31 * μ |
[28] | 0.91, 2.58, 4.3 | Loop antenna + PTAT sensor | 55 nm CMOS | 29.2, 46.5, 47.6 * | 1.57, 1.26, 3.29 * μ |
This work | 0.91, 2.58, 4.2 | Octagonal ring antenna + PTAT sensor | 55 nm CMOS | 32.6, 43.2, 40 | 1.28, 2.19, 2.37 μ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, T.-P.; Yan, S.-X.; Wang, J. Room-Temperature CMOS Monolithic Resonant Triple-Band Terahertz Thermal Detector. Micromachines 2023, 14, 627. https://doi.org/10.3390/mi14030627
Wang X, Li T-P, Yan S-X, Wang J. Room-Temperature CMOS Monolithic Resonant Triple-Band Terahertz Thermal Detector. Micromachines. 2023; 14(3):627. https://doi.org/10.3390/mi14030627
Chicago/Turabian StyleWang, Xu, Ting-Peng Li, Shu-Xia Yan, and Jian Wang. 2023. "Room-Temperature CMOS Monolithic Resonant Triple-Band Terahertz Thermal Detector" Micromachines 14, no. 3: 627. https://doi.org/10.3390/mi14030627
APA StyleWang, X., Li, T.-P., Yan, S.-X., & Wang, J. (2023). Room-Temperature CMOS Monolithic Resonant Triple-Band Terahertz Thermal Detector. Micromachines, 14(3), 627. https://doi.org/10.3390/mi14030627