Effect of Al2O3 and ZrO2 Filler Material on the Microstructural, Thermal and Dielectric Properties of Borosilicate Glass-Ceramics
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation of Powders and Sintered Ceramics
2.2. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tong, J.; Zhang, B.; Huang, W.; Yang, H. The effect of composition on Li2(Mg0.3Zn 0.7)Ti3O8-xTiO2 microwave dielectric ceramics for low temperature co-fired ceramics technology application. Mater. Lett. 2013, 95, 168–171. [Google Scholar] [CrossRef]
- Zhang, P.; Hao, M.; Xiao, M.; Zheng, Z. Crystal structure and microwave dielectric properties of novel BiMg2MO6 (M = P,V) ceramics with low sintering temperature. J. Mater. 2021, 6, 1344–1351. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, K.; Wu, S.; Xiao, M. Microwave dielectric properties of low temperature co-fired ceramics LiMg1-xAxPO4 (A = Mn, Ca, 0.02 ≤ x ≤ 0.08). Mater. Lett. 2019, 255, 2–6. [Google Scholar] [CrossRef]
- Yu, Y.; Hao, X.; Song, L.; Li, Z.; Song, L. Synthesis and characterization of single phase and low temperature co-fired cordierite glass-ceramics from perlite. J. Non. Cryst. Solids. 2016, 448, 36–42. [Google Scholar] [CrossRef]
- Li, J.; Su, H.; Sun, Y.; Wang, G.; Gao, F.; Han, X.; Liang, Z.; Li, Q. Enhancement of structural and microwave properties of Zn2+ ion-substituted Li2MgSiO4 ceramics for LTCC applications. Ceram. Int. 2021, 47, 2–6. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Nemati, A.; Banijamali, S. Fabrication and microwave dielectric characterization of cordierite/BZBS (Bi2O3-ZnO-B2O3-SiO2) glass composites for LTCC applications. J. Alloys Compd. 2021, 882, 160722. [Google Scholar] [CrossRef]
- Zitani, M.K.; Ebadzadeh, T.; Banijamali, S.; Riahifar, R.; Rüssel, C.; Abkenar, S.K.; Ren, H. High quality factor microwave dielectric diopside glass-ceramics for the low temperature co-fired ceramic (LTCC) applications. J. Non. Cryst. Solids. 2018, 487, 65–71. [Google Scholar] [CrossRef]
- Malecha, K.; Maeder, T.; Jacq, C.; Ryser, P. Structuration of the low temperature co-fired ceramics (LTCC) using novel sacrificial graphite paste with PVA-propylene glycol-glycerol-water vehicle. Microelectron. Reliab. 2011, 51, 805–811. [Google Scholar] [CrossRef] [Green Version]
- Kemethmuller, S.; Roosen, A.; Goetz-Neunhoeffer, F.; Neubauer, J. Quantitative analysis of crystalline and amorphous phases in glass-ceramic composites like LTCC by the rietveld method. J. Am. Ceram. Soc. 2006, 89, 2632–2637. [Google Scholar] [CrossRef]
- Luo, X.; Ren, L.; Xia, Y.; Hu, Y.; Gong, W.; Cai, M.; Zhou, H. Microstructure, sinterability and properties of CaO-B2O3-SiO2 glass/Al2O3 composites for LTCC application. Ceram. Int. 2017, 43, 6791–6795. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Yang, Z.; Li, E.; Tang, B.; Zhong, C. Sintering behaviors and thermal properties of Li2SiO3-based ceramics for LTCC applications. Ceram. Int. 2022, 48, 27312–27323. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, K.; Sun, W.; Chen, X.; Ruan, H. Phase composition, singtering behavior and microwave dielectric properties of M2BiLi2V3O12 (M = Zn, Ca) low temperature co-fired ceramics. Mater. Lett. 2018, 217, 20–22. [Google Scholar] [CrossRef]
- Tao, B.; Wang, W.; Liu, H.; Du, T.; Wu, H.; Xing, C.; Wang, D.; Zhang, Y. Low-temperature sintering LiF-doped Li4Mg3[Ti0·6(Mg1/3Nb2/3)0.4]2O9 microwave dielectric ceramics for LTCC applications. Ceram. Int. 2021, 47, 2584–2590. [Google Scholar] [CrossRef]
- Fernandes, J.; Barcelona, P.; Blanes, M.; Padilla, J.; Ramos, F.; Cirera, A.; Xuriguera, E. Study of mixing process of low temperature co-fired ceramics photocurable suspension for digital light processing stereolithography. Ceram. Int. 2021, 47, 15931–15938. [Google Scholar] [CrossRef]
- Kumari, P.; Tripathi, P.; Parkash, O.; Kumar, D. Low Temperature Sintering and Characterization of MgO-B2O3-SiO2 Glass-Ceramics for LTCC Substrate Applications. Trans. Indian Ceram. Soc. 2016, 75, 229–233. [Google Scholar] [CrossRef]
- Shigeno, K.; Li, M.; Fujimori, H. Development of novel temperature-stable Al2O3–TiO2-based dielectric ceramics featuring superior thermal conductivity for LTCC applications. J. Eur. Ceram. Soc. 2021, 41, 376–386. [Google Scholar] [CrossRef]
- Bermejo, R.; Supancic, P.; Krautgasser, C.; Morrell, R.; Danzer, R. Subcritical crack growth in Low Temperature Co-fired Ceramics under biaxial loading. Eng. Fract. Mech. 2013, 100, 108–121. [Google Scholar] [CrossRef]
- Bermejo, R.; Supancic, P.; Kraleva, I.; Morrell, R.; Danzer, R. Strength reliability of 3D low temperature co-fired multilayer ceramics under biaxial loading. J. Eur. Ceram. Soc. 2011, 31, 745–753. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Z.; Lin, C.; Han, L.; Gui, H.; Song, J.; Liu, T.; Lu, A. Influence of Y2O3 substitution for B2O3 on the structure and properties of alkali-free B2O3-Al2O3-SiO2 glasses containing alkaline-earth metal oxides. Phys. B Condens. Matter. 2019, 553, 47–52. [Google Scholar] [CrossRef]
- Cui, X.; Zhou, J. A simple and an effective method for the fabrication of densified glass-ceramics of low temperature co-fired ceramics. Mater. Res. Bull. 2008, 43, 1590–1597. [Google Scholar] [CrossRef]
- Arıbuğa, D.; Akkaşoğlu, U.; Çiçek, B.; Balcı-Çağıran, Ö. Enhanced Sinterability, Thermal Conductivity and Dielectric Constant of Glass-Ceramics with PVA and BN Additions. Materials 2022, 15, 1685. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Tao, H.; Li, P.; Fu, Y.; Zhou, H. Properties of borosilicate glass/Al2O3 composites with different Al2O3 concentrations for LTCC applications. J Mater Sci. Mater Electron. 2020, 31, 14069–14077. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, S.; Xiao, M.; Chen, L.; Sun, J.; Ding, J.; Li, X.; Gong, Y.; Zheng, K.; Zhang, X.; et al. Influence of silicon carbide nanowires on the properties of Bi–B–Si–Zn–Al glass based low temperature co-fired ceramics. Ceram. Int. 2022, 48, 25382–25389. [Google Scholar] [CrossRef]
- Li, Q.; Cai, D.; Yang, Z.; Duan, X.; He, P.; Sun, Y.; Li, H.; Jia, D.; Zhou, Y. Thermal properties and thermal shock resistance of BAS-BN composite ceramics. Ceram Int. 2019, 45, 8181–8187. [Google Scholar] [CrossRef]
- Nobuta, Y.; Takahashi, Y.; Miyazaki, T.; Terakado, N.; Onoue, N.; Shinozaki, T.; Fujiwara, T. Crystallization of nanostructured ZrO2 phase in borosilicate glass: Impact of Al2O3 on tetragonal-to-monoclinic phase transformation. J. Non Cryst. Solids 2018, 501, 49–54. [Google Scholar] [CrossRef]
- Hamzawy, E.; El-Kheshen, A.; Zawrah, M. Densification and properties of glass/cordierite composites. Ceram. Int. 2005, 31, 383–389. [Google Scholar] [CrossRef]
- Lima, M.; Monteiro, R.; Graça, M.; Ferreira Da Silva, M.G. Structural, electrical and thermal properties of borosilicate glass-alumina composites. J. Alloys Compd. 2012, 538, 66–72. [Google Scholar] [CrossRef]
- Qing, Z. The effects of B2O3 on the microstructure and properties of lithium aluminosilicate glass-ceramics for LTCC applications. Mater. Lett. 2018, 212, 126–129. [Google Scholar] [CrossRef]
- Ruys, A. Alumina Ceramics Biomedical and Clinical Applications, 1st ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 71–121. [Google Scholar] [CrossRef]
- Ghaffari, M.; Alizadeh, P.; Rahimipour, M.R. Sintering behavior and mechanical properties of mica-diopside glass–ceramic composites reinforced by nano and micro-sized zirconia particles. J. Non-Cryst. Solids. 2012, 358, 3304–3311. [Google Scholar] [CrossRef]
- Acchar, W.; Torquato, W.; Sousa, C. Using ZrO2 or Al2O3 particles to enhance the mechanical properties of a LZSA glass-ceramic matrix. Matéria 2009, 14, 674–679. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Lv, Y.; Zhang, L.; Ding, J.; Sun, J.; Li, X.; Chen, L.; Zheng, K.; Zhang, X.; Tian, X. High Performance of Low-Temperature-Cofired Ceramic with Al2O3/BN Biphasic Ceramics Based on B2O3–Bi2O3–SiO2–ZnO Glass. Adv. Eng. Mater. 2020, 22, 1901486. [Google Scholar] [CrossRef]
- Li, B.; Long, Q.; Duan, D. Effects of ZrO2 on properties of BaO–Al2O3–B2O3–SiO2 composites for LTCC applications. J. Mater. Sci. Mater. Electron. 2016, 27, 2824–2829. [Google Scholar] [CrossRef]
- Bilaç, O.; Duran, C. Al2O3/glass/hBN composites with high thermal conductivity and low dielectric constant for low temperature cofired ceramic applications. J. Asian Ceram. Soc. 2021, 9, 260–267. [Google Scholar] [CrossRef]
- Sun, Z.; Li, W.; Liu, Y.; Zhang, H.; Zhu, D.; Sun, H.; Hu, C.; Chen, S. Design and preparation of a novel degradable low-temperature co-fired ceramic (LTCC) composites. Ceram. Int. 2019, 45, 7001–7010. [Google Scholar] [CrossRef]
Sample Name | wt.% of Glass Powder | wt.% of Al2O3 Filler | wt.% of ZrO2 Filler | Sintering Condition |
---|---|---|---|---|
30Al-Ar | 70 | 30 | - | 950 °C, Ar |
40Al-Ar | 60 | 40 | - | 950 °C, Ar |
50Al-Ar | 50 | 50 | - | 950 °C, Ar |
30Al-O | 70 | 30 | - | 950 °C, air |
40Al-O | 60 | 40 | - | 950 °C, air |
50Al-O | 50 | 50 | - | 950 °C, air |
30Zr-Ar | 70 | - | 30 | 950 °C, Ar |
40Zr-Ar | 60 | - | 40 | 950 °C, Ar |
50Zr-Ar | 50 | - | 50 | 950 °C, Ar |
30Zr-O | 70 | - | 30 | 950 °C, air |
40Zr-O | 60 | - | 40 | 950 °C, air |
50Zr-O | 50 | - | 50 | 950 °C, air |
Sample Name | Average Density (g/cm3) | Relative Density (%) |
---|---|---|
30Al-Ar | 2.399 | 75.99 |
40Al-Ar | 2.665 | 72.86 |
50Al-Ar | 2.710 | 62.74 |
30Al-O | 2.435 | 77.11 |
40Al-O | 2.581 | 70.77 |
50Al-O | 2.799 | 64.80 |
30Zr-Ar | 2.748 | 100.00 |
40Zr-Ar | 2.967 | 100.00 |
50Zr-Ar | 3.012 | 93.48 |
30Zr-O | 2.500 | 90.99 |
40Zr-O | 2.761 | 93.07 |
50Zr-O | 3.022 | 93.76 |
Sample Name | Diffusivity (mm2/s) | Standard Deviation (mm2/s) | Average Thermal Conductivity (W/K.m) |
---|---|---|---|
30Al-O | 0.443 | 0.102 | 1.336 |
40Al-O | 0.472 | 0.017 | 1.507 |
30Zr-Ar | 0.992 | 0.133 | 2.904 |
40Zr-Ar | 0.976 | 0.138 | 2.869 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arıbuğa, D.; Karaahmet, O.; Balcı-Çağıran, Ö.; Çiçek, B. Effect of Al2O3 and ZrO2 Filler Material on the Microstructural, Thermal and Dielectric Properties of Borosilicate Glass-Ceramics. Micromachines 2023, 14, 595. https://doi.org/10.3390/mi14030595
Arıbuğa D, Karaahmet O, Balcı-Çağıran Ö, Çiçek B. Effect of Al2O3 and ZrO2 Filler Material on the Microstructural, Thermal and Dielectric Properties of Borosilicate Glass-Ceramics. Micromachines. 2023; 14(3):595. https://doi.org/10.3390/mi14030595
Chicago/Turabian StyleArıbuğa, Dilara, Oğuz Karaahmet, Özge Balcı-Çağıran, and Buğra Çiçek. 2023. "Effect of Al2O3 and ZrO2 Filler Material on the Microstructural, Thermal and Dielectric Properties of Borosilicate Glass-Ceramics" Micromachines 14, no. 3: 595. https://doi.org/10.3390/mi14030595
APA StyleArıbuğa, D., Karaahmet, O., Balcı-Çağıran, Ö., & Çiçek, B. (2023). Effect of Al2O3 and ZrO2 Filler Material on the Microstructural, Thermal and Dielectric Properties of Borosilicate Glass-Ceramics. Micromachines, 14(3), 595. https://doi.org/10.3390/mi14030595