Research on Lower Limb Step Speed Recognition Method Based on Electromyography
Abstract
:1. Introduction
2. Data Acquisition and Processing of Dual-Conduction Muscle Electrical Module
2.1. Experimental Facilities
2.2. Data Collection and Preprocessing
3. BP-HMM
3.1. BP Neural Network Model
3.1.1. Definition of Variables
3.1.2. Formula Derivation
3.1.3. Algorithmic Process
3.2. HMM
3.2.1. External Representation of HMM
3.2.2. Intrinsic Factors of HMM
4. Model Training and Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, Z.G.; Zhao, X.G.; Cheng, L.; Wang, Q.N.; Wang, W.Q. Recent advances in rehabilitation robots and intelligent assistance systems. Acta Autom. Sin. 2016, 42, 1765–1779. [Google Scholar]
- Kalita, B.; Narayan, J.; Dwivedy, S.K. Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review. Int. J. Soc. Robot. 2021, 13, 775–793. [Google Scholar] [CrossRef]
- Pérez Vidal, A.F.; Rumbo Morales, J.Y.; Ortiz Torres, G.; Sorcia Vázquez, F.D.J.; Cruz Rojas, A.; Brizuela Mendoza, J.A.; Rodríguez Cerda, J.C. Soft Exoskeletons: Development, Requirements, and Challenges of the Last Decade. Actuators 2021, 10, 166. [Google Scholar] [CrossRef]
- Islam, M.R.; Assad-Uz-Zaman, M.; Brahmi, B.; Bouteraa, Y.; Wang, I.; Rahman, M.H. Design and Development of an Upper Limb Rehabilitative Robot with Dual Functionality. Micromachines 2021, 12, 870. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Zhang, J.; Li, Y.; Niu, J.; Yang, Y.; Wang, H. Design and Analysis of a Lower Limb Rehabilitation Training Component for Bedridden Stroke Patients. Machines 2021, 9, 224. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, M.; Zhong, H.; Ji, X.; Xia, D.; Luo, X.; Yang, Y. Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot. Micromachines 2022, 13, 571. [Google Scholar] [CrossRef]
- Dollar, A.M.; Herr, H. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art. IEEE Trans. Robot. 2008, 24, 144–158. [Google Scholar] [CrossRef]
- Song, G.; Wang, Y.; Wang, M.; Li, Y. Lower Limb Movement Intent Recognition Based on Grid Search Random Forest Algorithm. In Proceedings of the 3rd International Conference on Robotics, Control and Automation, Chengdu, China, 11–13 August 2018; pp. 225–229. [Google Scholar]
- Lopez-Delis, A.; Delisle-Rodriguez, D.; Villa-Parra, A.C.; Bastos-Filho, T. Knee Motion Pattern Classification from Trunk Muscle Based on sEMG Signals. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 2604–2607. [Google Scholar]
- Xi, X.; Tang, M.; Miran, S.M.; Luo, Z. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors. Sensors 2017, 17, 1229. [Google Scholar] [CrossRef] [Green Version]
- Andrea, B.; Simone, F.; Hiroshi, H.; Toshihisa, T.; Federica, V. An Introductory Tutorial on Brain–Computer Interfaces and Their Applications. Electronics 2021, 10, 560. [Google Scholar]
- Peng, Z.; Cao, C.; Liu, Q.; Pan, W. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal. Math. Probl. Eng. 2013, 2013, 143435. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Soangra, R.; Lockhart, T.E. Automatic Detection of Dynamic and Static Activities of the Older Adults Using a Wearable Sensor and Support Vector Machines. Science 2020, 2, 62. [Google Scholar] [CrossRef]
- Gupta, P.; Dallas, T. Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer. IEEE Trans. Biomed. Eng. 2014, 61, 1780–1786. [Google Scholar] [CrossRef] [PubMed]
- Raez, M.B.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, B.; da Silva, R.L.; Li, M.; Huang, H.; Lobaton, E. Environmental Context Prediction for Lower Limb Prostheses with Uncertainty Quantification. IEEE Trans. Autom. Sci. Eng. 2021, 18, 458–470. [Google Scholar] [CrossRef]
- Wan, D.; Zhang, L.; Bai, Y.; Xie, Y. Research on Identification Algorithm Based on ECG Signal and Improved Convolutional Neural Network. J. Phys. Conf. Ser. 2021, 1757, 012046. [Google Scholar] [CrossRef]
- Laport, F.; Iglesia, D.; Dapena, A.; Castro, P.M.; Vazquez-Araujo, F.J. Proposals and comparisons from one-sensor EEG and EOG human–machine interfaces. Sensors 2021, 21, 2220. [Google Scholar] [CrossRef]
- Chowdhury, R.H.; Reaz, M.B.; Ali, M.A.B.M.; Bakar, A.A.; Chellappan, K.; Chang, T.G. Surface electromyography signal processing and classification techniques. Sensors 2013, 13, 12431–12466. [Google Scholar] [CrossRef]
- Huihui, C.; Farong, G.; Chao, C.; Taixing, T. Estimation of ankle angle based on multi-feature fusion with random forest. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 5549–5553. [Google Scholar]
- Li, Z.; Yuan, Y.; Luo, L.; Su, W.; Zhao, K.; Xu, C.; Huang, J.; Pi, M. Hybrid Brain/Muscle Signals Powered Wearable Walking Exoskeleton Enhancing Motor Ability in Climbing Stairs Activity. IEEE Trans. Med. Robot. Bionics 2019, 1, 218–227. [Google Scholar] [CrossRef]
- Tang, Z.; Yu, H.; Cang, S. Impact of load variation on joint angle estimation from surface emg signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 1342–1350. [Google Scholar] [CrossRef]
- Qin, G.; Qin, X.; Zhang, S.; Bai, J.; Wang, Z. Analysis of Movement Characteristics and Tendon Parameters of Lower Limbs in Human Body. Manned Spacefl. 2017, 23, 811–818. [Google Scholar]
- Khushaba, R.N.; Nazarpour, K. Decoding HD-EMG Signals for Myoelectric Control-How Small Can the Analysis Window Size be? IEEE Robot. Autom. Lett. 2021, 6, 8569–8574. [Google Scholar] [CrossRef]
- Alessandro, M.; Andrea, T.; Sandro, F.; Stefano, C.; Federica, V. On the Use of Fuzzy and Permutation Entropy in Hand Gesture Characterization from EMG Signals: Parameters Selection and Comparison. Appl. Sci. 2020, 10, 7144. [Google Scholar]
- Tigrini, A.; Scattolini, M.; Mengarelli, A.; Fioretti, S.; Morettini, M.; Burattini, L.; Verdini, F. Role of the Window Length for Myoelectric Pattern Recognition in Detecting User Intent of Motion. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Jinghan, H. Research on Gait Recognition Based on SEMG Signal and Acceleration Signal. Master’s Thesis, Hebei University of Technology, Tianjin, China, 2019. [Google Scholar] [CrossRef]
- Huang, Y.; Englehart, K.B.; Hudgins, B.; Chan, A.D. A Gaussian mixture model basedclassification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng. 2005, 52, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.D.C.; Englehart, K.B. Continuous myoelectric control for powered prostheses using hidden Markov models. IEEE Trans. Biomed. Eng. 2004, 52, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Morimoto, J. Bilinear modeling of EMG signals to extract userindependent features for multiuser myoelectric interface. IEEE Trans. Biomed. Eng. 2013, 60, 2205–2213. [Google Scholar] [CrossRef] [PubMed]
- Khezri, M.; Jahed, M. A neuro–fuzzy inference system for sEMG-based identification of hand motion commands. IEEE Trans. Ind. Electron. 2010, 58, 1952–1960. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Yang, C.; Xie, Q.; Su, C.Y. Boosting-based EMG patterns classification scheme for robustness enhancement. IEEE J. Biomed. Health Inform. 2013, 17, 545–552. [Google Scholar] [CrossRef]
- Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. A novel feature extraction for robust EMG pattern recognition. J. Comput. 2009, 1, 71–80. [Google Scholar]
- Young, A.J.; Smith, L.H.; Rouse, E.J.; Hargrove, L.J. Classification of simultaneous movements using surface EMG pattern recognition. IEEE Trans. Biomed. Eng. 2013, 5, 60. [Google Scholar]
- Li, G.; Schultz, A.E.; Kuiken, T.A. Quantifying pattern recognition—Based myoelectric control of multifunctional transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Phinyomark, A.; Quaine, F.; Charbonnier, S.; Serviere, C.; Tarpin-Bernard, F.; Laurillau, Y. EMG feature evaluation for improving myoelectric pattern recognition robustness. Expert Syst. Appl. 2013, 40, 4832–4840. [Google Scholar] [CrossRef]
- Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 2012, 39, 7420–7431. [Google Scholar] [CrossRef]
- Veer, K.; Sharma, T. A novel feature extraction for robust EMG pattern recognition. J. Med. Eng. Technol. 2016, 40, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016; pp. 101–104. [Google Scholar]
- Li, H. Tatistical Learning Method; Tsinghua University Press: Beijing, China, 2012; pp. 171–172. [Google Scholar]
EMG Eigenvalue Name | Feature Type | Reference |
---|---|---|
Root mean square, RMS | Time domain feature | [28,29,30] |
Mean absolute value, MAV | Time domain feature | [31,32] |
Slope sign change, SSC | Time domain feature | [33] |
Waveform length, WL | Time domain feature | [34,35] |
Zero crossing, ZC | Time domain feature | [34,35] |
Median frequency, MDF | Frequency domain feature | [36,37] |
Mean power, MNF | Frequency domain feature | [37,38] |
Real Pace (km/h) | Identification Result (km/h) | ||||||
---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
3 | 0.5469 | 0 | 0 | 0.2188 | 0 | 0.1875 | 0.0469 |
4 | 0 | 0.9296 | 0 | 0.0282 | 0.0282 | 0 | 0.0141 |
5 | 0 | 0.0145 | 0.7826 | 0 | 0.1719 | 0 | 0.0469 |
6 | 0.1429 | 0 | 0 | 0.6786 | 0.1786 | 0 | 0 |
7 | 0.0638 | 0 | 0.1064 | 0.1277 | 0.5532 | 0 | 0.1489 |
8 | 0.0882 | 0 | 0 | 0 | 0 | 0.9118 | 0 |
9 | 0.0769 | 0 | 0 | 0 | 0.1026 | 0.0513 | 0.7682 |
Real Pace (km/h) | Identification Result (km/h) | ||||||
---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
3 | 95% | 0 | 0 | 0 | 5% | 0 | 0 |
4 | 0 | 95% | 0 | 0 | 0 | 5% | 0 |
5 | 0 | 0 | 95% | 0 | 0 | 5% | 0 |
6 | 0 | 0 | 5% | 85% | 0 | 5% | 5% |
7 | 0 | 0 | 5% | 10% | 90% | 0 | 0 |
8 | 0 | 0 | 0 | 5% | 0 | 90% | 5% |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 100% |
Real Pace (km/h) | Identification Result (km/h) | ||||||
---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
3 | 95% | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 100% | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 100% | 0 | 0 | 0 | 0 |
6 | 0 | 5% | 90% | 0 | 0 | 5% | 0 |
7 | 0 | 0 | 0 | 5% | 95% | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 5% | 95% | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Wu, P.; Wang, W. Research on Lower Limb Step Speed Recognition Method Based on Electromyography. Micromachines 2023, 14, 546. https://doi.org/10.3390/mi14030546
Zhang P, Wu P, Wang W. Research on Lower Limb Step Speed Recognition Method Based on Electromyography. Micromachines. 2023; 14(3):546. https://doi.org/10.3390/mi14030546
Chicago/Turabian StyleZhang, Peng, Pengcheng Wu, and Wendong Wang. 2023. "Research on Lower Limb Step Speed Recognition Method Based on Electromyography" Micromachines 14, no. 3: 546. https://doi.org/10.3390/mi14030546
APA StyleZhang, P., Wu, P., & Wang, W. (2023). Research on Lower Limb Step Speed Recognition Method Based on Electromyography. Micromachines, 14(3), 546. https://doi.org/10.3390/mi14030546