# Impedance-Frequency Response of Closed Electrolytic Cells

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theory

^{3}), and diffusion coefficient D.

#### 2.1. Equation System

- (i).
- Poisson equation:$${\epsilon}_{e}\frac{{\partial}^{2}\mathsf{\Psi}(x,t)}{\partial {x}^{2}}=-ze{N}_{A}\left[{c}_{+}(x,t)-{c}_{-}(x,t)\right]$$
- (ii).
- Nernst–Planck equations:$${J}_{\pm}(x,t)=-D\left\{\frac{\partial {c}_{\pm}(x,t)}{\partial x}\pm {c}_{\pm}(x,t)\frac{\partial}{\partial x}\left[\frac{ze\mathsf{\Psi}(x,t)}{kT}\right]\right\}$$
^{2}s), $k$ is the Boltzmann constant, and $T$ the absolute temperature. - (iii).
- Continuity equations:$$\frac{\partial {J}_{\pm}(x,t)}{\partial x}=-\frac{\partial {c}_{\pm}(x,t)}{\partial t}$$

#### 2.2. Boundary Conditions

#### 2.3. Dimensionless Variables

## 3. Equation System Solution

## 4. Results

#### 4.1. Steady State

#### 4.1.1. Ionic Concentrations at the Central Plane of Closed Electrolytic Cells

#### 4.1.2. Electric Double Layer Thickness

#### 4.2. Frequency Response

_{B}:

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A

#### Appendix A.1. Proof of Equation (27)

#### Appendix A.2. Proof of Equation (58)

#### Appendix A.3. Proof of Equation (61)

## References

- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment and Applications; Wiley-Interscience: New York, NY, USA, 2005. [Google Scholar]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Brumleve, T.R.; Buck, R.P. Numerical solution of the Nernst-Planck and Poisson equation system with applications to membrane electrochemistry and solid state physics. J. Electroanal. Chem.
**1978**, 90, 1–31. [Google Scholar] [CrossRef] - Sorensen, T.B.; Compañ, V. Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc. Faraday Trans.
**1995**, 91, 4235–4250. [Google Scholar] [CrossRef] - Horno, J.; Moya, A.A.; González-Fernández, C.F. Simulation and interpretation of electrochemical impedances using the network method. J. Electroanal. Chem.
**1996**, 402, 73–80. [Google Scholar] [CrossRef] - Macdonald, J.R. Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Phys. Rev.
**1953**, 92, 4–17. [Google Scholar] [CrossRef] - Macdonald, J.R. Binary electrolyte small-signal frequency response. J. Electroanal. Chem.
**1974**, 53, 1–55. [Google Scholar] [CrossRef] - Brumleve, T.R.; Buck, R.P. Transmission line equivalent circuit models for electrochemical impedances. J. Electroanal. Chem.
**1981**, 126, 73–104. [Google Scholar] [CrossRef] - Jamnik, J.; Maier, J. Treatment of the Impedance of Mixed Conductors Equivalent Circuit Model and Explicit Approximate Solutions. J. Electrochem. Soc.
**1999**, 146, 4183. [Google Scholar] [CrossRef] - Macdonald, J.R. Effects of Various Boundary Conditions on the Response of Poisson Nernst Planck Impedance Spectroscopy Analysis Models and Comparison with a Continuous-Time Random-Walk Model. J. Phys. Chem. A
**2011**, 115, 13370–13380. [Google Scholar] [CrossRef] [PubMed] - Lelidis, I.; Macdonald, J.R.; Barbero, G. Poisson–Nernst–Planck Model with Chang-Jaffe, Diffusion, and Ohmic Boundary Conditions. J. Phys. D Appl. Phys.
**2016**, 49, 025503–11. [Google Scholar] [CrossRef] - Lenzi, E.K.; Zola, R.S.; Rossato, R.; Ribeiro, H.V.; Vieira, D.S.; Evangelista, L.R. Asymptotic behaviors of the Poisson-Nernst-Planck model, generalizations and best adjust of experimental data. Electrochimica Acta
**2017**, 226, 40–45. [Google Scholar] [CrossRef] - Song, J.; Khoo, E.; Bazant, M.Z. Electrochemical impedance of electrodiffusion in charged medium under dc bias. Phys. Rev. E
**2019**, 100, 042204. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Alexe-Ionescu, A.L.; Barbero, G.; Evangelista, L.R. Electric response of asymmetric electrolytic cells to small AC signals. J. Electroanal. Chem.
**2020**, 873, 114378. [Google Scholar] [CrossRef] - Li, C.K.; Huang, J. Impedance Response of Electrochemical Interfaces: Part I. Exact Analytical Expressions for Ideally Polarizable Electrodes. J. Electrochem. Soc.
**2021**, 167, 166517. [Google Scholar] [CrossRef] - Buck, R.P. Diffuse layer charge relaxation at the ideally polarized electrode. J. Electroanal. Chem. Interfacial Electrochem.
**1969**, 23, 219–240. [Google Scholar] [CrossRef] - Macdonald, J.R. Double layer capacitance and relaxation in electrolytes and solids. Trans. Faraday Soc.
**1970**, 66, 943–958. [Google Scholar] [CrossRef] - Cirkel, P.A.; van der Ploeg, J.P.M.; Koper, G.J.M. Electrode effects in dielectric spectroscopy of colloidal suspensions. Physica A
**1997**, 235, 269–278. [Google Scholar] [CrossRef] - Hollingsworth, A.D.; Saville, D.A. A broad frequency range dielectric spectrometer for colloidal suspensions Cell design calibration and validation. J. Colloid Interface Sci.
**2003**, 257, 65–76. [Google Scholar] [CrossRef] [PubMed] - Scott, M.; Paul, R.; Kalert, K.V.I.S. Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media, Part 2. J. Colloid Interface Sci.
**2000**, 230, 388–395. [Google Scholar] [CrossRef] - Barbero, G.; Alexe-Ionescu, A.L. Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid. Liq. Cryst.
**2005**, 32, 943–949. [Google Scholar] [CrossRef] - Batalioto, F.; Duarte, A.R.; Barbero, G.; Neto, A.M.F. Dielectric Dispersion of Water in the Frequency Range from 10 mHz to 30 MHz. J. Phys. Chem. B
**2010**, 114, 3467–3471. [Google Scholar] [CrossRef] - Lenzi, E.K.; Evangelista, L.R.; Taghizadeh, L.; Pasterk, D.; Zola, R.S.; Sandev, T.; Heitzinger, C.; Petreska, I. Reliability of Poisson–Nernst–Planck Anomalous Models for Impedance Spectroscopy, J. Phys. Chem. B
**2019**, 123, 7885–7892. [Google Scholar] [CrossRef] [PubMed] - Chang, H.; Jaffe, G. Polarization in Electrolytic Solutions. Part I. Theory. J. Chem. Phys.
**1952**, 20, 1071–1077. [Google Scholar] - Lenzi, E.K.; Evangelista, L.R.; Barbero, G. Fractional Diffusion Equation and Impedance Spectroscopy of Electrolytic Cells. J. Phys. Chem. B
**2009**, 113, 11371–11374. [Google Scholar] [CrossRef] [PubMed] - Santoro, P.A.; de Paula, J.L.; Lenzi, E.K.; Evangelista, L.R. Anomalous Diffusion Governed by a Fractional Diffusion Equation and the Electrical Response of an Electrolytic Cell. J. Chem. Phys.
**2011**, 135, 114704. [Google Scholar] [CrossRef] [PubMed] - Macdonald, J.R.; Evangelista, L.R.; Lenzi, E.K.; Barbero, G. Comparison of Impedance Spectroscopy Expressions and Responses of Alternate Anomalous Poisson-Nernst-Planck Diffusion Equations for Finite-Length Situations. J. Phys. Chem. C
**2011**, 115, 7648–7655. [Google Scholar] [CrossRef] - Elad, D.; Gavish, N. Finite domain effects in steady state solutions of Poisson-Nernst-Planck equations. SIAM J. Appl. Math.
**2019**, 79, 1030–1050. [Google Scholar] [CrossRef] - López-García, J.J.; Horno, J.; Grosse, C. On the use of the infinite solution hypothesis in electrochemical cells for the calculation of their differential capacitance. J. Electroanal. Chem.
**2022**, 904, 115925. [Google Scholar] [CrossRef] - López-García, J.J.; Horno, J.; Grosse, C. Combined Ionic Size and Electrode Spacing Effects on the Differential Capacitance of Confined Electrolytic Cells. J. Phys. Chem. C
**2022**, 126, 9154–9160. [Google Scholar] [CrossRef] - Bazant, M.Z.; Thornton, K.; Ajdari, A. Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E
**2004**, 70, 021506. [Google Scholar] [CrossRef] [Green Version] - Barbero, G.; Gliozzi, A.S.; Scalerandi, M.; Scarfone, A.M. Effects of a dc bias on electrical impedance spectroscopy in electrolytic cells. J. Mol. Liq.
**2018**, 272, 565–571. [Google Scholar] [CrossRef] - Bandopadhyay, A.; Shaik, V.A.; Chakraborty, S. Effects of finite ionic size and solvent polarization on the dynamics of electrolytes probed through harmonic disturbances. Phys. Rev. E
**2015**, 91, 042307. [Google Scholar] [CrossRef] [PubMed] - Stout, R.F.; Khair, A.S. Moderately nonlinear diffuse-charge dynamics under an ac voltage. Phys. Rev. E
**2015**, 92, 032305. [Google Scholar] [CrossRef] [Green Version] - Cohen, H.; Cooley, J.W. The numerical solution of the time-dependent Nernst-Planck equations. Biophys. J.
**1965**, 5, 145–162. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Lyklema, J. Fundamentals of Colloid and Interface Science; Solid/Liquid Interfaces; Academic Press: London, UK, 1995; Volume II. [Google Scholar]

**Figure 1.**Ionic concentration at the central plane of closed electrolytic cells as function of the surface potential for the indicated $L/{\lambda}_{D}$ values.

**Figure 2.**Numerical results for the electric potential profiles in a closed electrolytic cell calculated for $L/{\lambda}_{D}=100$ and the indicated surface potential values.

**Figure 3.**Dependence of the electric double layer thickness values on the surface potential, calculated for the indicated $L/{\lambda}_{D}$ values. Vertical dot lines show surface potential values corresponding to the double layer thickness minima, Equation (58).

**Figure 4.**Spectra of the real part of the impedance (

**a**), its imaginary part (

**b**), and its imaginary part multiplied by the angular frequency (

**c**), calculated for the indicated $L/{\lambda}_{D}$ values and the dimensionless surface potential ${\overline{\mathsf{\Psi}}}_{S}^{0}=8$. Dot and dash-dot straight lines (closed and open cells, respectively) correspond to the following: (

**a**) Real part of the impedance at frequencies between both dispersions, Equation (61) for open or (62) for closed cells; (

**b**) characteristic frequency of the high-frequency dispersion, Equation (60) for closed cells; (

**c**) Low-frequency limit of the imaginary part of the impedance multiplied by the frequency, Equations (63), (64), and (25) for closed or Equation (28) for open cells.

**Figure 5.**Spectra of the real part of the impedance (

**a**), the imaginary part (

**b**), and the imaginary part multiplied by the angular frequency (

**c**), calculated for the indicated dimensionless surface potential values and for $L/{\lambda}_{D}=100$. Dot and dash-dot straight lines (closed and open cells respectively) correspond to the following: (

**a**) Real part of the impedance at frequencies between both dispersions, Equation (61) for open or (62) for closed cells; (

**b**) characteristic frequency of the high-frequency dispersion, Equation (60) for closed cells; (

**c**) low-frequency limit of the imaginary part of the impedance multiplied by the frequency, Equations (63), (64), and (25) for closed or Equation (28) for open cells.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

López-García, J.J.; Horno, J.; Grosse, C.
Impedance-Frequency Response of Closed Electrolytic Cells. *Micromachines* **2023**, *14*, 368.
https://doi.org/10.3390/mi14020368

**AMA Style**

López-García JJ, Horno J, Grosse C.
Impedance-Frequency Response of Closed Electrolytic Cells. *Micromachines*. 2023; 14(2):368.
https://doi.org/10.3390/mi14020368

**Chicago/Turabian Style**

López-García, José Juan, José Horno, and Constantino Grosse.
2023. "Impedance-Frequency Response of Closed Electrolytic Cells" *Micromachines* 14, no. 2: 368.
https://doi.org/10.3390/mi14020368