Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of CIC Sensor
2.2. Experimental Setup of Vapor Control Chamber
2.3. Image Recording for Chromatic Analysis Using CIC Sensor
3. Results and Discussion
3.1. Characteristics of TLC Display
3.2. Characteristics of PEDOT:PSS Humidity Sensor with and without Doping Materials
3.3. Real-Time Detection with Humidity Using CIC Sensor
3.4. Real-Time Detection with Ethanol Vapor Using CIC Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, D.-H.; Park, J.-W. Wireless sensor network-based greenhouse environment monitoring and automatic control system for dew condensation prevention. Sensors 2011, 11, 3640–3651. [Google Scholar] [CrossRef] [PubMed]
- Coyle, S.; Lau, K.-T.; Moyna, N.; O’Gorman, D.; Diamond, D.; Francesco, F.D.; Costanzo, D.; Salvo, P.; Trivella, M.G.; Rossi, D.E. BIOTEX—Biosensing textiles for personalised healthcare management. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Mitani, Y.; Miyaji, K.; Kaneko, S.; Uekura, T.; Momose, H.; Johguchi, K. A compact perspiration meter system with capacitive humidity sensor for wearable health-care applications. Jpn. J. Appl. Phys. 2018, 57, 04FF10. [Google Scholar] [CrossRef]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, C.; Zhu, Z.; Lou, Q.; Shen, C.; Chen, Y.; Sun, J.; Ye, Y.; Zhang, J.; Dong, L.; et al. Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter 2021, 4, 1625–1638. [Google Scholar] [CrossRef]
- Wu, D.; Guo, C.; Zeng, L.; Ren, X.; Shi, Z.; Wen, L.; Chen, Q.; Zhang, M.; Li, X.J.; Shan, C.-X.; et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl. 2023, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, M.J.; She, Y. Humidity sensitive properties of crosslinked and quater-nized poly(4 vinylpyridine-co-butyl methacrylate). Sens. Actuator B Chem. 2005, 107, 252–257. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Chen, X.; Ding, X.; Zhao, X. High-sensitive humidity sensor based on graphene oxide with evenly dispersed multiwalled carbon nanotubes. Mater. Chem. Phys. 2018, 207, 135–140. [Google Scholar] [CrossRef]
- Qiang, T.; Wang, C.; Liu, M.-Q.; Adhikari, K.K.; Liang, J.-G.; Wang, L.; Li, Y.; Wu, Y.-M.; Yang, G.-H.; Meng, F.-Y.; et al. Highperformance porous MIM-type capacitive humidity sensor realized via inductive coupled plasma and reactive-Ion etching. Sens. Actuator B Chem. 2018, 258, 704–714. [Google Scholar] [CrossRef]
- Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuator A Phys. 2008, 144, 280–295. [Google Scholar] [CrossRef]
- Chen, L.; Li, T.; Chan, C.; Menon, R.; Balamurali, P.; Shaillender, M.; Neu, B.; Ang, X.; Zu, P.; Wong, W.; et al. Chitosan based fiber-optic fabry-perot humidity sensor. Sens. Actuator B Chem. 2012, 169, 167–172. [Google Scholar] [CrossRef]
- Ashley, G.M.; Kirby, P.B.; Butler, T.P.; Whatmore, R.; Luo, J.K. Chemically sensitized thin-film bulk acoustic wave resonators as humidity sensors. J. Electrochem. Soc. 2010, 157, J419–J424. [Google Scholar] [CrossRef]
- Gkoupidenis, P.; Schaefer, N.; Garlan, B.; Malliaras, G.G. Neuromorphic functions in PEDOT:PSS organic electrochemical transistors. Adv. Mater. 2015, 27, 7176–7180. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.-W.; Chung, W.-J.; Keo, K.; Jin, H.-E.; Lee, B.Y.; Wang, E.; Zueger, C.; Wong, W.C.; Meyer, J.; Kim, C.; et al. Biomimetic virus-based colourimetric sensors. Nat. Commun. 2013, 5, 3043. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Fan, B.; Samdin, T.D.; Monteiro, D.A.; Sesai, M.S.; Scheideler, O.; Jin, H.-E.; Kim, S.; Lee, S.-W. Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System. ACS Nano 2017, 11, 3632–3641. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Sajid, M.; Aziz, S.; Yang, B.-S. Wide range high speed relative humidity sensor based onPEDOT:PSS–PVA composite on an IDT printed on piezoelectric substrate. Sens. Actuator A Phys. 2015, 228, 40–49. [Google Scholar] [CrossRef]
- Julian, T.; Rianjanu, A.; Hidayat, S.N.; Kusumaatmaja, A.; Roto, R.; Triyana, K. Quartz crystal microbalance coated with PEDOT–PSS/PVA nanofiber for a high-performance humidity sensor. J. Sens. Sens. Syst. 2019, 8, 243–250. [Google Scholar] [CrossRef]
- Yao, X.; Cui, Y. A PEDOT:PSS functionalized capacitive sensor for humidity. Measurements 2020, 160, 107782. [Google Scholar] [CrossRef]
- Silva, E.A.d.; Duc, C.; Redon, N.; Wojkiewicz, J.-L. Humidity Sensor Based on PEO/PEDOT:PSS Blends for Breath Monitoring. Macromol. Mater. Eng. 2021, 306, 2100489. [Google Scholar] [CrossRef]
- Romero, F.J.; Rivadeneyra, A.; Becherer, M.; Morales, D.P.; Rodriguez, N. Fabrication and Characterization of Humidity Sensors Based on Graphene Oxide–PEDOT:PSS Composites on a Flexible Substrate. Micromachines 2020, 11, 148. [Google Scholar] [CrossRef]
- Wei, Q.; Mukaida, M.; Kirihara, K.; Naitoh, Y.; Ishida, T. Thermoelectric power enhancement of PEDOT:PSS in high-humidity conditions. Appl. Phys Express 2014, 7, 031601. [Google Scholar] [CrossRef]
- Lim, J.; Choi, S.; Kim, H.S. Electrospinning behavior and piezoelectric property of PVDF/PEDOT:PSS composite web by PEDOT:PSS addition. Polym. Adv. Technol. 2023, 34, 1959–1966. [Google Scholar] [CrossRef]
- Huang, J.; Miller, P.F.; Wilson, J.S.; de Mello, A.J.; de Mello, J.C.; Bradley, D.D.C. Investigation of the Effects of Doping and Post-Deposition Treatments on the Conductivity, Morphology, and Work Function of Poly(3,4 ethylenedioxythiophene)/Poly(styrene sulfonate) Films. Adv. Funct. Mater. 2005, 15, 290–296. [Google Scholar] [CrossRef]
- Thomas, J.P.; Leung, K.T. Defect-minimized PEDOT:PSS/planar-Si solar cell with very high efficiency. Adv. Funct. Mater. 2014, 24, 4978–4985. [Google Scholar] [CrossRef]
- Gualandi, I.; Marzocchi, M.; Scavetta, E.; Calienni, M.; Bonfiglio, A.; Fraboni, B. A simple all-PEDOT:PSS electrochemical transistor for ascorbic acid sensing. J. Mater. Chem. B 2015, 3, 6753–6762. [Google Scholar] [CrossRef] [PubMed]
- Aizawa, K.; Chonan, Y.; Komiyama, T.; Yamaguchi, H.; Aoyama, T. Enhancement of thermoelectric properties of PEDOT:PSS films prepared under an electric field. J. Electron. Mater. 2017, 46, 5145–5149. [Google Scholar] [CrossRef]
- Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L.H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R.M.; et al. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133. [Google Scholar] [CrossRef]
- Worfolk, B.J.; Andrews, S.C.; Park, S.; Reinspach, J.; Liu, N.; Toney, M.F.; Mannsfeld, S.C.B.; Bao, Z. Ultrahigh electrical conductivity in solution-sheared polymeric transparent films. Proc. Natl. Acad. Sci. USA 2015, 112, 14138–14143. [Google Scholar] [CrossRef]
- Hossein-Babaei, F.; Zare, A.H. The selective flow of volatile organic compounds in conductive polymer-coated microchannels. Sci. Rep. 2017, 7, 42299. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.; Kim, J.H. Highly Conductive PEDOT:PSS Thin Films with Two-Dimensional Lamellar Stacked Multi-Layers. Nanomaterials 2020, 10, 2211. [Google Scholar] [CrossRef]
- Hassan, G.; Sajid, M.; Choi, C. Highly Sensitive and Full Range Detectable Humidity Sensor using PEDOT:PSS, Methyl Red and Graphene Oxide Materials. Sci. Rep. 2019, 9, 15227. [Google Scholar] [CrossRef] [PubMed]
- Hasabeldaim, E.H.H.; Swart, H.C.; Kroon, R.E. Luminescence and stability of Tb doped CaF2 nanoparticles. RSC Adv. 2023, 13, 5353–5366. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Adv. Sci. 2019, 6, 1900813. [Google Scholar] [CrossRef]
- Luo, R.; Li, H.; Du, B.; Zhou, S.; Zhu, Y. A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT:PSS-PDMS blends. Org. Electron. 2020, 76, 105451. [Google Scholar] [CrossRef]
- Khasim, S.; Pasha, A.; Badi, N.; Lakshmi, M.; Al-Ghamdi, S.A.; AL-Aoh, H.A. PVA Treated PEDOT-PSS: TiO2 Nanocomposite Based High-Performance Sensors Towards Detection of Relative Humidity and Soil Moisture Content for Agricultural Applications. J. Polym. Environ. 2021, 29, 612–623. [Google Scholar] [CrossRef]
- Ouyang, J. “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 2013, 34, 423–436. [Google Scholar] [CrossRef]
- Khasim, S.; Pasha, A.; Badi, N.; Lakshmi, M.; Mishra, Y.K. High performance flexible supercapacitors based on secondary doped PEDOT–PSS–graphene nanocomposite films for large area solid state devices. RSC Adv. 2020, 10, 10526–10539. [Google Scholar] [CrossRef]
- Li, S.; Chen, S.; Zhou, H.; Zhang, Q.; Lv, Y.; Sun, W.; Zhang, Q.; Guo, X. Achieving humidity-insensitive ammonia sensor based on Poly(3,4-ethylene dioxythiophene): Poly(styrenesulfonate). Org. Electron. 2018, 62, 234–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, K.; Ouyang, S.; Luo, L.; Hu, H.; Zhang, Q.; Zhu, Z. Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films. Phys. B Condens. Matter 2005, 368, 94–99. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, G.; Shen, Y.; Yang, H.; Xu, K. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. Micro-Nano Lett. 2022, 14, 150. [Google Scholar] [CrossRef]
- Xuan, W.; He, X.; Chen, J.; Wang, W.; Wang, X.; Xu, Y.; Xu, Z.; Fu, Y.Q.; Luo, J.K. High sensitivity flexible Lamb-wave humidity sensors with a graphene oxide sensing layer. Nanoscale 2015, 7, 7430–7436. [Google Scholar] [CrossRef] [PubMed]
Sensing Material | Sensing Technique | Relative Humidity Range | Maximum Sensitivity | Measurement Instrument | Reference |
---|---|---|---|---|---|
GO | Capacitance/impedance | 25–85% | 1.22 nF/%RH | LCR meter | [20] |
ZnO | QCM | 5–97% | 97 Hz/%RH | QCM | [39] |
PEDOT:PSS/PVA | QCM | 40–60% | 35 Hz/%RH | QCM | [17] |
ZnO | Lamb wave | 10–85% | 20 kHz/%RH | SAW analyzer | [41] |
Ti3C2/TiO2 | Capacitance | 7–97% | 1614 pF/%RH (>33% RH) | Impedance analyzer | [40] |
PEDOT:PSS | Piezo resistance | 20–66% | 4.3 mΩ/%RH | Digital multimeter | [18] |
PEDOT:PSS/PVA | Impedance/capacitance | 0–80% | 81 Ω/%RH 33 pF/%RH | LCR meter | [16] |
PEDOT:PSS/EG | Resistance/colorimetry | 20–90% | 0.5 Ω/%RH (RH 30 to 80%) 5.7 Ω/%RH (RH 80 to 90%) −0.04 °C/%RH (all ranges) −82,036 K/%RH (RH 20 to 30%) −514 K/%RH (RH 30 to 90%) | Digital multimeter Camera Eye | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-H.; Kuo, C.-T.; Lian, B.-Y. Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity. Micromachines 2023, 14, 2254. https://doi.org/10.3390/mi14122254
Cheng Y-H, Kuo C-T, Lian B-Y. Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity. Micromachines. 2023; 14(12):2254. https://doi.org/10.3390/mi14122254
Chicago/Turabian StyleCheng, Yu-Hsuan, Ching-Te Kuo, and Bo-Yao Lian. 2023. "Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity" Micromachines 14, no. 12: 2254. https://doi.org/10.3390/mi14122254
APA StyleCheng, Y. -H., Kuo, C. -T., & Lian, B. -Y. (2023). Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity. Micromachines, 14(12), 2254. https://doi.org/10.3390/mi14122254