BBD Driven Fabrication of Hydroxyapatite Engineered Risedronate Loaded Thiolated Chitosan Nanoparticles and Their In Silico, In Vitro, and Ex Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. In Silico Molecular Docking
2.3.1. Preparation of Ligand
2.3.2. Preparation of Proteins
2.3.3. Docking Analysis Using Autodock Tools 1.5.6
2.3.4. Interaction Plot of Ligand and Protein
2.4. Experimental Design
2.5. Synthesis of Thiolated Chitosan (TCS)
Determination of the Thiol Groups in TCS
- Ellman’s reagent method
- Fourier transform infrared spectroscopy technique
- Differential scanning calorimetry (DSC)
2.6. Fabrication of RIS-HA Particles
2.7. Preparation of RIS-HA-TCS Nanoparticles
2.8. Optimization of RIS-HA-TCS Nanoparticles
Conjugation of RIS-HA-TCS with mPEG
2.9. Characterization of Polymeric Nanoparticles
2.9.1. Particle Size and Polydispersity Index (PDI)
2.9.2. Determination of Drug Entrapment Efficiency (%EE)
2.9.3. Transmission Electron Microscopy (TEM)
2.9.4. Differential Scanning Calorimetry (DSC)
2.9.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.10. In Vitro Release Study
2.11. Ex Vivo Intestinal Permeation Study
3. Results
3.1. In Silico Activity
3.2. Synthesis of Thiolated Chitosan (TCS)
3.3. Determination of the Thiol Groups in TCS
3.3.1. Ellman’s Method
3.3.2. Fourier Transform Infrared Spectroscopy (FT-IR)
3.3.3. Differential Scanning Calorimetry (DSC)
3.4. Fabrication of RIS-HA Particles
3.5. Experimental Design Optimization
3.5.1. The Effect of Independent Variables on Particle Size (Y1)
3.5.2. The Effect of Independent Variables on PDI (Y2)
3.5.3. The Effect of Independent Variables on Encapsulation Efficiency (Y3)
3.6. Selection of Optimized RIS-HA-TCS Nanoparticles
3.7. Characterization of RIS-HA-TCS and RIS-HA-TCS-mPEG
3.7.1. Particle Size and Polydispersity Index
3.7.2. Entrapment Efficiency (%EE)
3.7.3. Transmission Electron Microscopy Analysis
3.7.4. Differential Scanning Calorimetry
3.7.5. Fourier Transform Infrared Spectroscopy (FTIR) Spectra
3.8. In Vitro Drug Release Experiment
3.9. Ex Vivo Intestinal Permeation Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kendler, D.; Body, J.-J.; Brandi, M.; Broady, R.; Cannata-Andia, J.; Cannata-Ortiz, M.; El Maghraoui, A.; Guglielmi, G.; Hadji, P.; Pierroz, D.D.; et al. Osteoporosis management in hematologic stem cell transplant recipients: Executive summary. J. Bone Oncol. 2021, 28, 100361. [Google Scholar] [CrossRef] [PubMed]
- Khajuria, D.K.; Razdan, R.; Mahapatra, D.R. Drugs for the management of osteoporosis: A review. Rev. Bras. Reumatol. 2011, 51, 365–371, 379–382. [Google Scholar] [PubMed]
- Bonnick, S.; Saag, K.G.; Kiel, D.P.; McClung, M.; Hochberg, M.; Burnett, S.A.M.; Sebba, A.; Kagan, R.; Chen, E.; Thompson, D.E.; et al. Comparison of weekly treatment of postmenopausal osteoporosis with alendronate versus risedronate over two years. J. Clin. Endocrinol. Metab. 2006, 91, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.; Manglani, K.; Gupta, S.; Kalam, A.; Vohora, D.; Ahmad, F.J.; Talegaonkar, S. Design and development of bioceramic based functionalized PLGA nanoparticles of risedronate for bone targeting: In-vitro characterization and pharmacodynamic evaluation. Pharm. Res. 2015, 32, 3149–3158. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.Y.; St. Peter, J.V.; Eusebio, R.A.; Pallone, K.A.; Kelly, S.C.; Russell, D.A.; Nesbitt, J.D.; Thompson, G.A.; Powell, J.H. Effect of renal function on risedronate pharmacokinetics after a single oral dose. Br. J. Clin. Pharmacol. 2000, 49, 215–222. [Google Scholar] [CrossRef]
- Perkins, A.C.; Wilson, C.G.; Frier, M.; Vincent, R.M.; Blackshaw, P.E.; Dansereau, R.J.; Juhlin, K.D.; Bekker, P.J.; Spiller, R.C. Esophageal transit of risedronate cellulose-coated tablet and gelatin capsule formulations. Int. J. Pharm. 1999, 186, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Jung, I.-W.; Han, H.-K. Effective mucoadhesive liposomal delivery system for risedronate: Preparation and in vitro/in vivo characterization. Int. J. Nanomed. 2014, 9, 2299. [Google Scholar]
- Shi, X.; Wang, Y.; Wei, K.; Ren, L.; Lai, C. Self-assembly of nanohydroxyapatite in mesoporous silica. J. Mater. Sci. Mater. Med. 2008, 19, 2933–2940. [Google Scholar] [CrossRef]
- Balani, K.; Anderson, R.; Laha, T.; Andara, M.; Tercero, J.; Crumpler, E.; Agarwal, A. Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro. Biomaterials 2007, 28, 618–624. [Google Scholar] [CrossRef]
- Thomas, S.C.; Mishra, P.K.; Talegaonkar, S. Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Curr. Pharm. Des. 2015, 21, 6165–6188. [Google Scholar] [CrossRef]
- Palazzo, B.; Iafisco, M.; Laforgia, M.; Margiotta, N.; Natile, G.; Bianchi, C.L.; Walsh, D.; Mann, S.; Roveri, N. Biomimetic hydroxyapatite–drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv. Funct. Mater. 2007, 17, 2180–2188. [Google Scholar] [CrossRef]
- Cenni, E.; Granchi, D.; Avnet, S.; Fotia, C.; Salerno, M.; Micieli, D.; Sarpietro, M.G.; Pignatello, R.; Castelli, F.; Baldini, N. Biocompatibility of poly(D, L-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials 2008, 29, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Talegaonkar, S.; Azeem, A.; Ahmad, F.J.; Khar, R.K.; Pathan, S.A.; Khan, Z.I. Microemulsions: A novel approach to enhanced drug delivery. Recent Pat. Drug Deliv. Formul. 2008, 2, 238–257. [Google Scholar] [CrossRef]
- Sarmento, B.; Andrade, F.; da Silva, S.B.; Rodrigues, F.; das Neves, J.; Ferreira, D. Cell-based in vitro models for predicting drug permeability. Expert Opin. Drug Metab. Toxicol. 2012, 8, 607–621. [Google Scholar] [CrossRef]
- Hirano, S.; Seino, H.; Akiyama, Y.; Nonaka, I. Chitosan: A Biocompatible Material for Oral and Intravenous Administrations. In Progress in Biomedical Polymers; Springer: Berlin/Heidelberg, Germany, 1990; Volume 1, pp. 283–290. [Google Scholar]
- Khan, S.A.; Patil, K.S.; Yeole, P.G. Intranasal mucoadhesive buspirone formulation: In vitro characterization and nasal clearance studies. Die Pharm. 2008, 63, 348–351. [Google Scholar]
- Kafedjiiski, K.; Krauland, A.H.; Hoffer, M.H.; Bernkop-Schnürch, A. Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials 2005, 26, 819–826. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A.; Guggi, D.; Pinter, Y. Thiolated chitosans: Development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. J. Control. Release Off. J. Control. Release Soc. 2004, 94, 177–186. [Google Scholar] [CrossRef]
- Dünnhaupt, S.; Barthelmes, J.; Thurner, C.C.; Waldner, C.; Sakloetsakun, D.; Bernkop-Schnürch, A. S-protected thiolated chitosan: Synthesis and in vitro characterization. Carbohydr. Polym. 2012, 90, 765–772. [Google Scholar] [CrossRef]
- Sahana, H.; Khajuria, D.K.; Razdan, R.; Mahapatra, D.R.; Bhat, M.R.; Suresh, S.; Rao, R.R.; Mariappan, L. Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle-based formulation in a rat model of osteoporosis. J. Biomed. Nanotechnol. 2013, 9, 193–201. [Google Scholar] [CrossRef]
- Mukherjee, D.; Srinivasan, B.; Anbu, J.; Azamthulla, M.; Banala, V.T.; Ramachandra, S.G. Improvement of bone microarchitecture in methylprednisolone induced rat model of osteoporosis by using thiolated chitosan-based risedronate mucoadhesive film. Drug Dev. Ind. Pharm. 2018, 44, 1845–1856. [Google Scholar] [CrossRef]
- Kast, C.E.; Frick, W.; Losert, U.M.; Bernkop-Schnürch, A. Chitosan-thioglycolic acid conjugate: A new scaffold material for tissue engineering? Int. J. Pharm. 2003, 256, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, R.; Juárez, J.; Almada, M.; Ibarra, J.; Valdez, M.A. Synthesis and Characterization of New Thiolated Chitosan Nanoparticles Obtained by Ionic Gelation Method. Int. J. Polym. Sci. 2015, 2015, 502058. [Google Scholar] [CrossRef]
- De Pinho Neves, A.L.; Milioli, C.C.; Müller, L.; Riella, H.G.; Kuhnen, N.C.; Stulzer, H.K. Factorial design as tool in chitosan nanoparticles development by ionic gelation technique. Colloids Surf. A Physicochem. Eng. Asp. 2014, 445, 34–39. [Google Scholar] [CrossRef]
- Wang, K.; Jialang, Z.; Jingyuan, Z.; Maosheng, X.; Yen, W.; Yuanqing, Z.; Yubing, L.; Zuanguang, C. PEGylated chitosan nanoparticles with embedded bismuth sulfide for dual-wavelength fluorescent imaging and photothermal therapy. Carbohydr. Polym. 2018, 184, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Prabahar, K.; Udhumansha, U.; Qushawy, M. Optimization of Thiolated Chitosan Nanoparticles for the Enhancement of in Vivo Hypoglycemic Efficacy of Sitagliptin in Streptozotocin-Induced Diabetic Rats. Pharmaceutics 2020, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, X.; Liu, L.; Zhang, Q. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res. Lett. 2013, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Soni, K.; Rizwanullah, M.; Kohli, K. Development and optimization of sulforaphane-loaded nanostructured lipid carriers by the Box-Behnken design for improved oral efficacy against cancer: In vitro, ex vivo and in vivo assessments. Artif. Cells Nanomed. Biotechnol. 2018, 46, 15–31. [Google Scholar] [CrossRef]
- Kast, C.E.; Bernkop-Schnürch, A. Thiolated polymers—Thiomers: Development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials 2001, 22, 2345–2352. [Google Scholar] [CrossRef]
- Connolly, S.; Rao, S.N.; Fitzmaurice, D. Characterization of Protein Aggregated Gold Nanocrystals. J. Phys. Chem. B 2000, 104, 4765–4776. [Google Scholar] [CrossRef]
- Anitha, A.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar, R. Development of mucoadhesive thiolated chitosan nanoparticles for biomedical applications. Carbohydr. Polym. 2011, 83, 66–73. [Google Scholar] [CrossRef]
- Mukherjee, D.; Srinivasan, B.; Anbu, J.; Azamthulla, M.; Teja, B.V.; Ramachandra, S.G.; Krishnaveni, N.; Lakkawar, A. Pamidronate functionalized mucoadhesive compact for treatment of osteoporosis-in vitro and in vivo characterization. J. Drug Deliv. Sci. Technol. 2019, 1, 915–926. [Google Scholar] [CrossRef]
- Annadurai, G.; Ling, L.Y.; Lee, J.F. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida. J. Hazard. Mater. 2008, 151, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Udhumansha, U.; Rathnam, G.; Ganesh, M.; Jang, H.T. Capecitabine encapsulated chitosan succinate-sodium alginate macromolecular complex beads for colon cancer targeted delivery: In vitro evaluation. Int. J. Biol. Macromol. 2018, 117, 840–850. [Google Scholar] [CrossRef]
- Mahdizadeh Barzoki, Z.; Emam-Djomeh, Z.; Mortazavian, E.; Rafiee-Tehrani, N.; Behmadi, H.; Rafiee-Tehrani, M.; Moosavi-Movahedi, A.A. Determination of diffusion coefficient for released nanoparticles from developed gelatin/chitosan bilayered buccal films. Int. J. Biol. Macromol. 2018, 112, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Malakar, J.; Nayak, A.K. Formulation and statistical optimization of multiple-unit ibuprofen-loaded buoyant system using 23-factorial design. Chem. Eng. Res. Des. 2012, 90, 1834–1846. [Google Scholar] [CrossRef]
- Chen, K.Y.; Zeng, S.Y. Preparation and Characterization of Quaternized Chitosan Coated Alginate Microspheres for Blue Dextran Delivery. Polymers 2017, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Ubaidulla, U.; Khar, R.K.; Ahmad, F.J.; Sultana, Y.; Panda, A.K. Development and characterization of chitosan succinate microspheres for the improved oral bioavailability of insulin. J. Pharm. Sci. 2007, 96, 3010–3023. [Google Scholar] [CrossRef]
- Li, Y.; Wu, M.; Liu, R.; Huang, Y. Cellulose-based solid–solid phase change materials synthesized in ionic liquid. Sol. Energy Mater. Sol. Cells 2009, 93, 1321–1328. [Google Scholar] [CrossRef]
- Zu, C.; Yu, Y.; Yu, C.; Li, Y.; Sun, R.; Chaurasiya, B.; Tang, B.; Chen, D.; Tu, J.; Shen, Y. Highly loaded deoxypodophyllotoxin nano-formulation delivered by methoxy polyethylene glycol-block-poly (D, L-lactide) micelles for efficient cancer therapy. Drug Deliv. 2020, 27, 248–257. [Google Scholar] [CrossRef]
- Lipton, A.N.; Fathima, A.; Vincent, S. In-vitro Evaluation of Chitosan-Hydroxyapatite Nanocomposite Scaffolds as Bone Substitutes with Antibiofilm Properties. J. Pure Appl. Microbiol. 2021, 15, 1455–1471. [Google Scholar] [CrossRef]
- Rizwanullah, M.; Amin, S.; Ahmad, J. Improved pharmacokinetics and antihyperlipidemic efficacy of rosuvastatin-loaded nanostructured lipid carriers. J. Drug Target. 2017, 25, 58–74. [Google Scholar] [CrossRef] [PubMed]
- El-Nashar, D.; Khalaf, A.; Naser, A.; Abdel-Wahhab, H.; Ellaban, A. Study the Effect of a Polymerizable Surfactant on the Physico–Mechanical Properties of Natural Rubber (NR) and Styrene Butadiene Rubber (SBR). Egypt. J. Chem. 2018, 61, 33–44. [Google Scholar] [CrossRef]
- Dai, Y.; Zhou, R.; Liu, L.; Lu, Y.; Qi, J.; Wu, W. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): In vitro characterization and improved corneal permeation. Int. J. Nanomed. 2013, 8, 1921–1933. [Google Scholar]
- Zhou, S.; Deng, H.; Zhang, Y.; Wu, P.; He, B.; Dai, W.; Zhang, H.; Zhang, Q.; Zhao, R.; Wang, X. Thiolated Nanoparticles Overcome the Mucus Barrier and Epithelial Barrier for Oral Delivery of Insulin. Mol. Pharm. 2020, 17, 239–250. [Google Scholar] [CrossRef]
- Maria, S.; Sarwar, H.S.; Sohail, M.F.; Imran, M.; Salman Qureshi, O.; Raza, A.; Ahmad, N.M.; Iqbal, A.; Shahnaz, G. Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide. J. Drug Deliv. Sci. Technol. 2020, 58, 101807. [Google Scholar] [CrossRef]
Variables | Constraints | ||
---|---|---|---|
Independent | +1 | 0 | −1 |
A = TPP (mg/mL) | 2 | 1.5 | 1 |
B = TCS (mg/mL) | 35 | 30 | 25 |
C = Drug − HA (mg/mL) | 20 | 15 | 10 |
Dependent | Objectives | ||
Y1 = particle size (nm) | Optimum | ||
Y2 = PDI | Minimize | ||
Y3 = EE (%) | Maximize |
S.NO. | RIS:HA | Process Yield | RIS %EE |
---|---|---|---|
1 | 1:1 | 73.27 + 4.37 | 70.30 + 1.01% |
2 | 1:2 | 74.80 + 2.61 | 73.87 + 0.72% |
3 | 1:3 | 84.57 + 3.06 | 62.27 + 1.27% |
4 | 1:4 | 70.83 + 4.93 | 87.23 + 0.91% |
5 | 1:5 | 86.07 + 3.19 | 84.30 + 0.70% |
6 | 2:1 | 60.87 + 6.62 | 93.97 + 1.56% |
7 | 3:1 | 75.17 + 5.33 | 59.00 + 1.28% |
8 | 4:1 | 79.90 + 7.81 | 76.14 + 1.15% |
9 | 5:1 | 65.33 + 2.96 | 69.33 + 1.08% |
Run | A: TCS | B: RIS-HA | C: TPP | Particle Size | PDI | EE |
---|---|---|---|---|---|---|
(mg/mL) | (mg/mL) | (mg/mL) | (nm) | (%) | ||
1 | 30 | 15 | 1.5 | 259.63 | 0.255 | 85.37 |
2 | 30 | 15 | 1.5 | 256.46 | 0.252 | 85.42 |
3 | 30 | 20 | 1 | 288.23 | 0.312 | 88.14 |
4 | 25 | 15 | 2 | 207.38 | 0.227 | 79.66 |
5 | 30 | 10 | 2 | 214.77 | 0.247 | 80.31 |
6 | 30 | 15 | 1.5 | 253.82 | 0.252 | 85.73 |
7 | 35 | 15 | 2 | 298.16 | 0.283 | 90.67 |
8 | 25 | 10 | 1.5 | 163.65 | 0.214 | 71.92 |
9 | 25 | 15 | 1 | 198.21 | 0.231 | 77.68 |
10 | 25 | 20 | 1.5 | 228.24 | 0.238 | 83.47 |
11 | 35 | 20 | 1.5 | 326.38 | 0.359 | 93.65 |
12 | 35 | 10 | 1.5 | 273.28 | 0.273 | 84.68 |
13 | 30 | 10 | 1 | 217.23 | 0.238 | 78.34 |
14 | 35 | 15 | 1 | 317.17 | 0.326 | 89.23 |
15 | 30 | 20 | 2 | 267.12 | 0.275 | 89.83 |
Models | R2 | R2 (Adjusted) | R2 (Predicted) | S.D. | C.V. (%) |
---|---|---|---|---|---|
Response, Y1 | |||||
Linear | 0.9786 | 0.9728 | 0.9577 | 7.61 | – |
2F1 | 0.9893 | 0.9813 | 0.9574 | 6.31 | – |
Quadratic | 0.9985 | 0.9958 | 0.9837 | 3.00 | 1.19 |
Response, Y2 | |||||
Linear | 0.8829 | 0.8509 | 0.7699 | 0.0155 | – |
2F1 | 0.9654 | 0.9394 | 0.9026 | 0.0099 | – |
Quadratic | 0.9928 | 0.9797 | 0.8877 | 0.0057 | 2.16 |
Response, Y3 | |||||
Linear | 0.9799 | 0.9744 | 0.9667 | 0.92 | – |
2F1 | 0.9836 | 0.9713 | 0.9537 | 0.98 | – |
Quadratic | 0.9994 | 0.9983 | 0.9927 | 0.23 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saifi, Z.; Ralli, T.; Rizwanullah, M.; Alam, M.; Vohora, D.; Mir, S.R.; Amin, S.; Ameen, S. BBD Driven Fabrication of Hydroxyapatite Engineered Risedronate Loaded Thiolated Chitosan Nanoparticles and Their In Silico, In Vitro, and Ex Vivo Studies. Micromachines 2023, 14, 2182. https://doi.org/10.3390/mi14122182
Saifi Z, Ralli T, Rizwanullah M, Alam M, Vohora D, Mir SR, Amin S, Ameen S. BBD Driven Fabrication of Hydroxyapatite Engineered Risedronate Loaded Thiolated Chitosan Nanoparticles and Their In Silico, In Vitro, and Ex Vivo Studies. Micromachines. 2023; 14(12):2182. https://doi.org/10.3390/mi14122182
Chicago/Turabian StyleSaifi, Zoya, Tanya Ralli, Md. Rizwanullah, Meraj Alam, Divya Vohora, Showkat R. Mir, Saima Amin, and Sadia Ameen. 2023. "BBD Driven Fabrication of Hydroxyapatite Engineered Risedronate Loaded Thiolated Chitosan Nanoparticles and Their In Silico, In Vitro, and Ex Vivo Studies" Micromachines 14, no. 12: 2182. https://doi.org/10.3390/mi14122182
APA StyleSaifi, Z., Ralli, T., Rizwanullah, M., Alam, M., Vohora, D., Mir, S. R., Amin, S., & Ameen, S. (2023). BBD Driven Fabrication of Hydroxyapatite Engineered Risedronate Loaded Thiolated Chitosan Nanoparticles and Their In Silico, In Vitro, and Ex Vivo Studies. Micromachines, 14(12), 2182. https://doi.org/10.3390/mi14122182