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Abstract: Risedronate sodium (RIS) exhibits limited bioavailability and undesirable gastrointestinal
effects when administered orally, necessitating the development of an alternative formulation. In this
study, mPEG-coated nanoparticles loaded with RIS-HA-TCS were created for osteoporosis treatment.
Thiolated chitosan (TCS) was synthesized using chitosan and characterized using DSC and FTIR,
with thiol immobilization assessed using Ellman’s reagent. RIS-HA nanoparticles were fabricated
and conjugated with synthesized TCS. Fifteen batches of RIS-HA-TCS nanoparticles were designed
using the Box–Behnken design process. The nanoparticles were formulated through the ionic gelation
procedure, employing tripolyphosphate (TPP) as a crosslinking agent. In silico activity comparison
of RIS and RIS-HA-TCS for farnesyl pyrophosphate synthetase enzyme demonstrated a higher
binding affinity for RIS. The RIS-HA-TCS nanoparticles exhibited 85.4 ± 2.21% drug entrapment
efficiency, a particle size of 252.1 ± 2.44 nm, and a polydispersity index of 0.2 ± 0.01. Further
conjugation with mPEG resulted in a particle size of 264.9 ± 1.91 nm, a PDI of 0.120 ± 0.01, and
an encapsulation efficiency of 91.1 ± 1.17%. TEM confirmed the spherical particle size of RIS-HA-
TCS and RIS-HA-TCS-mPEG. In vitro release studies demonstrated significantly higher release for
RIS-HS-TCS-mPEG (95.13 ± 4.64%) compared to RIS-HA-TCS (91.74 ± 5.13%), RIS suspension
(56.12 ± 5.19%), and a marketed formulation (74.69 ± 3.98%). Ex vivo gut permeation studies
revealed an apparent permeability of 0.5858 × 10−1 cm/min for RIS-HA-TCS-mPEG, surpassing
RIS-HA-TCS (0.4011 × 10−4 cm/min), RIS suspension (0.2005 × 10−4 cm/min), and a marketed
preparation (0.3401 × 10−4 cm/min).

Keywords: risedronate; thiolated chitosan; PEGylated nanoparticles; osteoporosis; hydroxyapatite

1. Introduction

Chronic bone disease that weakens bones and raises the possibility of fractures as
people age is called osteoporosis. As predicted in a previous study, there is an evident rise
to 62 lakh cases by 2050 from 16 lakh cases in 1990 [1]. Osteoporosis, a disease that reduces
bone mass and strength, can be treated using a number of different approaches. However,
there are several restrictions and long-term safety concerns associated with the current
therapies [2]. Therefore, more research is required to determine the best therapy choice.
Most therapeutic strategies for reducing bone loss and avoiding fractures can be grouped
into two categories, i.e., anabolic drugs and anti-resorptive drugs [3]. Bisphosphonates,
calcitonin, estrogen selective receptor modulators, and monoclonal antibodies, such as
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denosumab, are all examples of anti-resorptive medications that work by decreasing the ac-
tivity of osteoclasts to build bone strength. In contrast, anabolic drugs (recombinant human
parathyroid hormone, calcitonin, and estrogen) are able to induce the formation of bones
and can reverse bone degeneration, which is caused by the progression of osteoporosis [4].
With inhibition of Farnesyl Pyrophosphate Synthase (FPPS), a key enzyme in membrane
protein prenylation, as well as osteoclast detachment from bone, BPs disrupt osteoclastic
activity. In the end, they cause apoptosis in osteoclasts, which decreases bone resorption.
Treatment with alendronate and risedronate (RIS) is regarded as first-line therapy for
controlling and preventing osteoporosis in post-menopausal for both men and women [3].

Bone problems, including Paget’s disease and osteoporosis, are treatable using RIS.
It can be swallowed, but taking it that way comes with some precautions to prevent
esophageal ulcers, such as taking it while standing up and then washing it down with
water [5,6]. If taken with food, absorption is even worse. Therefore, it is strongly advised
that no meal to be consumed within two hours and thirty minutes before medication.
In addition, it belongs to class III of the biopharmaceutics categorization system (high
solubility/low permeability) and has a poor oral bioavailability of 1% [7]. Therefore,
there is a need for effective drug delivery systems for RIS that increase bioavailability and
decrease the likelihood of esophageal pain.

Given its structural similarity to minerals found in dentin or natural bones and its
bioactivity, osteoconductive, non-inflammatory, and biocompatibility properties, Hydrox-
yapatite (HA) is used widely as a biomaterial for bone regeneration [8,9]. As BPs attach
to HA, the binding capacity of bone increases. In addition, BPs have the unique ability to
prevent the breakdown of hydroxyapatite (HA) already present in the bone [10]. As a result
of this property, HA is a trusted conveyance for the delivery of BPs [11]. Due to its biocom-
patibility and biodegradability, poly(lactide-co-glycolide) (PLGA) is used in drug delivery
systems. Drug release characteristics could be altered by tailoring PLGA’s copolymer ratio,
molecular weight, porosity, particle size, and manufacturing conditions [12,13].

Naturally occurring chitosan (CS) has the right properties to serve as a polymeric
carrier for nanoparticles (NPs) [14]. Biocompatibility, biodegradability, nontoxicity, and low
cost all fall into this category. Further, it exhibits bio-adhesive properties and the potential
to greatly increase the permeability of hydrophilic compounds [15,16]. To boost chitosan’s
mucoadhesive properties, a wide variety of chitosan derivatives have been developed [17].
Because they form covalent bonds with the mucus layer, which are theoretically stronger as
compared with the non-covalent bonds, thiol-functionalized polymers have an adhesion
advantage over other derivatives [18]. These thiolated polymers (also known as thiomers)
interact with cysteine-rich sub-domains of mucus glycoproteins through Disulfide Ex-
change Mechanisms. This is because Thiolated Chitosan (TCS) is able to form inter- and
intra-molecular disulfide bonds at physiological pH, which gives them their in situ gelling
capabilities. As a result of the latter process, the carrier matrix is guaranteed to be robust
and with integrity [19].

Biomimetic HA-blending-AL (HA-AL) nanocrystals were created by Palazzo et al. (2007)
as a possible anticancer medication delivery mechanism [11]. Biocompatible and biodegrad-
able poly(lactide-co-glycolide) (PLGA) has been widely employed as a medication delivery
carrier [4]. In a rat model of post-menopausal osteoporosis, Sahana et al. (2013) docu-
mented the therapeutic benefit of new RIS-HA-loaded NPs over RIS monotherapy for the
treatment of osteoporosis [20]. Bilayered mucoadhesive films using risedronate sodium
and multicomponent polymers, as reported by Mukherjee et al. It was effectively possible
to chemically modify chitosan (thiolation of chitosan) with thioglycolic acid, resulting
in increased mucoadhesive qualities, good swelling behavior, and a precise drug release
pattern. According to the pharmacological evaluation, the application of thiolated chitosan
film containing risedronate was shown to reduce osteoclastic activity [21].

This study proposes the development of nanoconjugates of RIS attached with HA and
further conjugate with mPEG for its delivery to the affected bones for the treatment of
osteoporosis. Polymer conjugation offers better encapsulation for such a moiety, making the
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medication more accessible despite its low penetration. The first-step-prepared nanocon-
jugate was encapsulated in TCS that had been synthesized from CS. In this research, we
describe the development of mucoadhesive conjugated nanoparticles, which combine the
advantages of small particle size with increased penetration and blood circulation time.

2. Materials and Methods
2.1. Materials

Jubilant Life Sciences provided a sample of risedronate sodium (RIS), also known
as [1-hydroxy-2-(3-pyridinyl) ethylidene] bis [phosphonic acid] mono-sodium salt hemi-
pentahydrate (350.13 g/mol) (Noida, Uttar Pardesh, India). Lipoid is found to be the
source of mPEG 2000-DSPE (PE 18:0/18:0-PEG, 2000) (Ludwigshafen, Germany). From S.G.
Enterprises, 502.31 g/mol hydroxyapatite (HA) and thioglycolic acid (TGA) 92.12 g/mol
were purchased. Dialysis bags (MW 12,000 Da, with 2.5 mm flat width, 16 mm diameter,
and 60 mL/ft capacity), chitosan (MWCO: 750,000 Da), sodium tripolyphosphates (TPP),
dimethylformamide (DMF) (MWCO: 73.09 g/mol), and DMF were all obtained from
Sigma Aldrich, Mumbai, India. Spectro-chem supplied N-hydroxy succinimide (NHS),
an Ellman’s reagent, and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride
(EDAC). The other substances and reagents of analytical grade were employed in the study.

2.2. Animals

Wistar rats (225–250 g, both sexes) were used in the ex vivo gut permeation experiment,
and the plan for using animals in experimentation was approved by the Jamia Hamdard
University, Institutional Animal Ethics Committee (IAEC) (Approval no. 1821/CPCSEA).
Lab animals were fed pellets (Lipton, Mumbai, India) and always had access to clean water.
The procedures for caring for and using lab animals were followed as per instructions from
the National Institute of Health throughout all operations involving animals.

2.3. In Silico Molecular Docking
2.3.1. Preparation of Ligand

In this experiment, RIS and RIS-HA-TCS were used as the ligands. The three-dimensional
structure of RIS was downloaded in sdf format via PubChem (http://pubchem.ncbi.nlm.
nih.gov/). The .SDF file was converted into .pdb file utilizing the software OpenBabel.
The ligands.pdb file was converted to a more portable .pdbqt format with the help of
Autodock Tools 1.5.6. ChemDraw Professional version 15 was used to create a 3D model of
RIS-HA-TCS.

2.3.2. Preparation of Proteins

The RCSB (Research Collaboratory for Structural Bioinformatics) protein databank
contains the three-dimensional structures of the various molecules of protein. Human
farnesyl diphosphate synthase structures were found in the RCSB’s Protein Data Bank
(PDB) ID: 1YV5. Water molecules were detected from the enzyme structure using AutoDock
tools 1.5.6. Further, Kollman charges and polar hydrogen molecules were added. The final
structure was saved in .pdbqt format.

2.3.3. Docking Analysis Using Autodock Tools 1.5.6

The structures of ligand molecules were inserted into protein structures using AutoDock
tools 1.5.6. The complete structures of protein were inserted into the grid box, and the
coordinates of the grid box were saved. The flexible ligand molecule was inserted into a
rigid protein molecule. Lamarckian genetic algorithm was used to determine the flexible
anchoring at the receptor (active site). To determine the energy between the receptor and
ligand, calculations were carried out and expressed in Kcal/mol.

http://pubchem.ncbi.nlm.nih.gov/
http://pubchem.ncbi.nlm.nih.gov/
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2.3.4. Interaction Plot of Ligand and Protein

The ligand–protein molecule interactions were analyzed using Discovery Studio 2021
version. Different hydrophilic and hydrophobic bonds were expressed by different colors.

2.4. Experimental Design

Several independent factors in the creation of nanoparticles were optimized using
Design Expert® software (V.13.0; Stat-Ease Inc., Minneapolis, MI, USA). Three centered
points were investigated in 15 experimental runs based on a Box–Behnken design. This ex-
perimental design was used to observe how different dependent variables were affected by
independent variables. Y1: Particle Size; Y2: Polydispersity Index (PDI), and Y3: Percent En-
trapment Efficiency were dependent factors, while TPP(A), TCS(B), and Drug−HA(C) were
the independent variables, with high (+1), medium (0), and low (−1) values, respectively.
All these variables are represented in Table 1.

Table 1. Various variables (independent and dependent) used for the preparation and optimization
of RIS-HA-TCS nanoparticles in the Box–Behnken design (BBD).

Variables Constraints

Independent +1 0 −1
A = TPP (mg/mL) 2 1.5 1
B = TCS (mg/mL) 35 30 25

C = Drug − HA (mg/mL) 20 15 10

Dependent Objectives

Y1 = particle size (nm) Optimum
Y2 = PDI Minimize

Y3 = EE (%) Maximize

2.5. Synthesis of Thiolated Chitosan (TCS)

TCS was synthesized from chitosan, as depicted in Figure 1, following the method
reported and slightly modified [22]. Briefly, 2 mL DMF was added to a flask containing
NHS (2 mg), EDAC·HCl (3.5 mg), and TGA (1 mL), and this mixture was constantly stirred
overnight. After completing the reaction, reactive NHS-ester was generated. Then, the
solution of chitosan hydrochloride was prepared by adding demineralized water to 500 mg
of hydrated chitosan in 1 M HCl in a 4 mL flask and shaking it to dissolve the content. After
that, the pH of the chitosan hydrochloride solution was adjusted to 5 with 10 M NaOH,
and then, the reactive NHS-ester was added drop by drop. After being stirred constantly,
this mixture was left for incubation at room temperature for 24 h. Extensive dialyzing in
tubing (molecular weight cut-off 12,000 Da; cellulose membrane; dialysis tubing; Sigma
Aldrich, India) against HCl (5 mM), which was followed by three cycles of dialyzing against
HCl (1 mM) at 8 ◦C in dark to isolate TCS. Samples and control (chitosan solution) were
lyophilized (Labfreez FD-10R, Beijing, China), then kept at 4 ◦C; this process involved
freezing aqueous polymer solutions. Ellman’s reagent technique, FT-IR, DSC were applied
to characterize TCS polymer and establish the presence of a thiol group (Perkin–Elmer
Spectrum, Mumbai, India).

Determination of the Thiol Groups in TCS

• Ellman’s reagent method

The amount of thiol group substitution in the synthesized polymer was measured by
spectroscopy using Ellman’s reagent [22]. The symmetric aryl disulfide Ellman’s reagent is
highly reactive with the free thiol in the thiol-disulfide interchange. For the preparation
of the 2 mg/mL solution, the conjugate compounds and controls were initially dissolved
in 5 mm of ultrapure water in 2 mL. Next, 250 µL of aliquots were each given 0.4 mg/mL
of DTNB in pH 8 phosphate buffer (0.5 mol/L) and phosphate buffer of pH 8 (0.5 M) of
Ellman’s reagent, respectively. At room temperature, the sample was stored for 3 h away
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from light. To remove any remaining particles, this solution was centrifuged at a speed
of 8000 rpm for a period of 20 min. After that, a UV-VIS spectrophotometer was used to
detect absorbance at 450 nm (Shimadzu Corp, Kyoto, Japan). Unaltered chitosan was used
as a control group.

• Fourier transform infrared spectroscopy technique

Perkin–Elmer Spectrum used the KBr (potassium bromide) method to determine FT-IR
spectra of TCS and chitosan. The characteristic peaks present in the newly synthesized
polymer (amide bonds and thiol peaks) confirmed the presence of TCS [22].

• Differential scanning calorimetry (DSC)

The thermotropic evaluation of TCS and chitosan was carried out using DSC (Perkin
Elmer, Pyris 6, Waltham, MA, USA). In an aluminium crimped pan, about 2 mg of the
sample was kept with a lid and subjected to heating between 40 and 400 ◦C at a scanning
rate of 10 ◦C/min. As a reference, the same empty (blank) pan was used.
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2.6. Fabrication of RIS-HA Particles

Plain HA particles were mixed with 10 mL of 0.5 mg/mL solution of RIS in distilled
water to create RIS-HA particles. For 8 h, the solution was stirred at 37 ◦C (Table 2). After
isolating the deposited phase, it was washed thrice using distilled water and then dried.
Drug adsorption on HA was measured, and the particles were conjugated with TCS [4].
Table 2 displays the yields and percent entrapment of RIS with a variety of RIS to HA ratios.

Process yield =
obtained amount of RIS − HA
Loaded amount of RIS & HA

(1)
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%EE =
W1 − W2

W1
× 100 (2)

where, W1 is the amount of drug in the beginning, W2 is the amount of free/unentrapped
drug, and W1 − W2 is the amount of drug entrapped.

Table 2. Yield of product and entrapment efficiency of RIS-HA particles.

S.NO. RIS:HA Process Yield RIS %EE

1 1:1 73.27 + 4.37 70.30 + 1.01%
2 1:2 74.80 + 2.61 73.87 + 0.72%
3 1:3 84.57 + 3.06 62.27 + 1.27%
4 1:4 70.83 + 4.93 87.23 + 0.91%
5 1:5 86.07 + 3.19 84.30 + 0.70%
6 2:1 60.87 + 6.62 93.97 + 1.56%
7 3:1 75.17 + 5.33 59.00 + 1.28%
8 4:1 79.90 + 7.81 76.14 + 1.15%
9 5:1 65.33 + 2.96 69.33 + 1.08%

2.7. Preparation of RIS-HA-TCS Nanoparticles

The crosslinking agent TPP forms a gel by ionic reaction with the positively charged
amino group of TCS [23]. TPP was used to prepare RIS-loaded nanoparticles. All the
concentrations of different variables are mentioned in Table 1. TCS (25–35 mg/mL) was
briefly dissolved in 2% w/w CH3COOH solution and then allowed to stir overnight at
25 ◦C. A small amount of NaOH (2 M) solution was added, and the pH of the resulting
solution was raised from 4 to 5. After that, RIS-HA (10–20 mg/mL) was added in a 2:1 ratio
and vortexed further. The TPP aqueous solution (1–2 mg/mL) was prepared with distilled
water and kept in the refrigerator at 0–2 ◦C for 4 h. At 60 ◦C, the TCS solution was stirred
for 10 min. After transferring the TCS solution to the flask containing the finished RIS-HA,
the aqueous TPP solution was added while stirring constantly for 10 min. Once removed
from the ice bath, the RIS-HA-TCS nanoparticles were stirred for an additional 15 min
to achieve an opalescent suspension. The RIS-HA-TCS nanoparticles were stored in an
airtight container for future use after centrifuged at 3000 rpm for 30 min [24].

2.8. Optimization of RIS-HA-TCS Nanoparticles

The ideal formulation was chosen for further studies with the goal of having the
optimum particle size, the minimum PDI, and the highest possible drug entrapment. In
order to reach the set objective, the effect of variables on PDI, particle size, and %EE
was analyzed.

Conjugation of RIS-HA-TCS with mPEG

RIS-HA-TCS NPs were further modified with mPEG. Firstly, 100 mg of RIS-HA-TCS
NPs were suspended in 20 mL water, and then, after stirring at room temperature overnight,
hydroxyl-mPEG-NHS ester (50 mg) was mixed to react with the amino groups on RIS-HA-
TCS NPs surface. The required RIS-HA-TCS-mPEG were obtained after centrifugation
(5000 rpm) for 10 min; these were then stored in a well-closed container until future use [25].

2.9. Characterization of Polymeric Nanoparticles
2.9.1. Particle Size and Polydispersity Index (PDI)

Using Malvern Zetasizer (Malvern Master Sizer 2000, SM, Malvern, UK), laser light
scattering was used to determine the particle size of both the optimized formulation
RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles. After diluting with distilled water,
RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles were mixed in the sample unit. The
experiments were carried out three times (n = 3).
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2.9.2. Determination of Drug Entrapment Efficiency (%EE)

The entrapment efficiency of RIS in the nanoparticles was determined indirectly
by determining the free or unentrapped RIS present in the optimized formulation after
centrifugation. In this process, the optimized formulation was centrifuged at 15,000 rpm
for 30 min at 4 ◦C. A UV-visible spectrophotometer (Shimadzu, Model UV-1601, Kyoto,
Japan) was used to measure the concentration of RIS in the supernatant that was taken
in the tube after it had been separated and diluted 10 times with distilled water and
set to 263 nm. Therefore, the following calculation was used to determine the EE as a
percentage. The experiment was conducted three times, and the results were presented as
mean value ± standard deviation.

%EE =
W1 − W2

W1
× 100 (3)

where, W1 is the amount of drug in the beginning, W2 is the amount of free/unentrapped
drug, and W1 − W2 is the amount of drug entrapped.

2.9.3. Transmission Electron Microscopy (TEM)

Transmission electron microscopy (Morgagni 268D-SEI, Thermofisher, Bleiswijk, The
Netherlands) operated at 100 kV with point-to-point resolution was used to examine the
morphology of RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles. Negatively dyed with
phosphotungstic acid, the RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles were diluted
50-fold in double-distilled water and dried on the carbon-coated grid for examination.

2.9.4. Differential Scanning Calorimetry (DSC)

The thermotropic properties of RIS, HA, mPEG, a physical mixture of RIS with excipi-
ents, and lyophilized optimized RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles were
observed using DSC (Pyris 6, Perkin Elmer, Waltham, MA, USA). The samples were placed
in an aluminum pan and subjected to heating between 40 and 400 ◦C at a scanning rate of
10 ◦C/min.

2.9.5. Fourier Transform Infrared Spectroscopy (FTIR)

Lyophilized optimized RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles, as well as
FTIR spectra of RIS, HA, mPEG, surfactant, and physical mixtures of RIS with excipients,
were recorded (Bruker Optik GmbH, Ettlingen, Germany). The scanning range was adjusted
from 4000 to 400 cm−1 with a resolution of 4 cm−1.

2.10. In Vitro Release Study

The dialysis bag (12,000 g/mol:MW and 16 mm: diameter) method was used in the
drug release experiment [26]. The dialysis bag was immersed in simulated intestinal fluid,
pH 6.8, for pre-treatment and kept for 24 h before the experiment began. To dissolve
the optimal formulation of 5 mg RIS, a dialysis sac was submerged in 500 mL of freshly
produced SIF at 37 ◦C in a dissolving flask. Samples of 2 mL were taken at regular
intervals (15 min, 30 min, 1, 2, 4, 6, 8, 12, and 24 h) while the digital magnetic stirrer was
running at 100 rpm. To keep the sink state, an equal amount of SIF was refilled. Finally,
a UV-VIS spectrophotometer set to 263 nm was used to determine the exact amount of
RIS in each sample. The release of RIS from optimized RIS-HA-TCS and RIS-HA-TCS-
mPEG nanoparticles was compared with the RIS suspension and commercially available
preparation (RISOSFOS 35 mg/Week). The study was performed thrice (n = 3).

2.11. Ex Vivo Intestinal Permeation Study

A modified version of the everted sac model was used to examine the passage of
RIS through the intestinal barrier [27,28]. Following overnight fasting, animals were
administered diethyl ether anaesthesia before being sacrificed via cervical dislocation.
After surgically removing the small intestine, a 5-cm portion was carved out, and the food



Micromachines 2023, 14, 2182 8 of 21

remnants were washed away in normal saline. After everting the intestine with a glass rod,
2 ml of Krebs–Ringer solution was injected. In Krebs–Ringer solution (50 mL), the portion
of the intestine sac containing 2000 µg RIS was kept, and the entire setup was maintained
at 37 ± 0.5 ◦C, aerated with O2 (95%) and CO2 (5%). At 0, 15, 30, 45, 60, 75, and 90 min,
2 ml aliquots of serosal medium were obtained for quantification of RIS permeated. A
UV-VIS spectrophotometer calibrated to a wavelength of 263 nm was used to measure
the amount of RIS that passed through the gut. Filtration of the sample was performed
through a syringe filter (0.45 µm pore size) before analysis. For the optimized RIS-HA-TCS,
RIS-HA-TCS-mPEG nanoparticles, and commercial formulation, a similar experiment was
carried out. The below-given formula was used for calculating the Apparent Permeability
(Papp) coefficient of RIS suspension, marketed formulation, optimized RIS-HA-TCS, and
RIS-HA-TCS-mPEG nanoparticles:

Papp =
F
A

× C0 cm min−1 (4)

where, F is permeation flux, C0 is concentration at outset, and A is ileum’s total surface area.

3. Results
3.1. In Silico Activity

AutoDock Vina was used to carry out the docking studies of RIS and conjugated
RIS for farnesyl pyrophosphate synthetase enzyme. Binding energies below 5 kcal/mol
represent weak binding, whereas higher values, above 10 kcal/mol, signify strong binding.
Furthermore, the protein−ligand interaction structures were obtained using Discovery
Studio and they are depicted in Figure 2. The binding affinity for RIS and RIS-TCS-HA
were found to be −6.86 and −27.70 kcal/mol, respectively. Moreover, number of hydrogen
bonds for both RIS and RIS-TCS-HA was found to be five. These results showed that the
formulation that we prepared in our study had four times better binding than RIS alone.
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3.2. Synthesis of Thiolated Chitosan (TCS)

The TCS synthesized by the above method was found to be more significant than
alternative methods [29]. We chose DMF as the reaction medium instead of water as
compared to the previously published studies. First, the reactive NHS-ester, which was
discovered to be more reliable and stable for the subsequent reaction, was synthesized [30].
Next, the cationic chitosan polymer’s main amino groups were coupled with the reactive
NHS-ester. These modifications were made (a) to prevent unstable Oacylisourea ester
hydrolyzing in H2O and (b) it is possible that the concentration of the target reactant may
rise if the reactive NHS-ester was to be produced. As shown in Figure 3, TCS appeared as
white, fibrous in structure and was odourless. TCS was also soluble in an aqueous medium.

Micromachines 2023, 14, x FOR PEER REVIEW 10 of 23 
 

 

 

Figure 3. Structure of the synthesized fibrous thiolated chitosan (TCS). 

3.3. Determination of the Thiol Groups in TCS  

3.3.1. Ellman’s Method 

The thiol group immobilization by the polymer was found to be 2402.23 ± 2.71 

µmol/g. 

3.3.2. Fourier Transform Infrared Spectroscopy (FT-IR) 

In Figure 4, the FT-IR spectra of TCS and chitosan are shown. The following distinc-

tive peaks were observed in the chitosan spectrum: (a) 3410 cm−1 due to O-H and N-H, (b) 

2924 cm−1 due to C-H,1623 cm−1, (c) 1513cm−1 due to N–H, (d) 1088 cm−1 due to C–N, (e) 

1380 cm−1 (C-H), (f) 651 cm−1 (NH2), (g) 1248cm−1 (O-H), (h) 1153cm−1 (C-O-C). In TCS, all 

characteristic peaks were observed except NH2 peaks. Additional peaks of the newly cre-

ated -CONH2 bond were also found: amide band I at 1629 cm−1, amide band at 1524 cm−1, 

and thiol group peaks at 1251 cm−1 due to NH2 reaction between chitosan and carboxyl 

groups of TGA [31].  

Figure 3. Structure of the synthesized fibrous thiolated chitosan (TCS).

3.3. Determination of the Thiol Groups in TCS
3.3.1. Ellman’s Method

The thiol group immobilization by the polymer was found to be 2402.23 ± 2.71 µmol/g.

3.3.2. Fourier Transform Infrared Spectroscopy (FT-IR)

In Figure 4, the FT-IR spectra of TCS and chitosan are shown. The following distinctive
peaks were observed in the chitosan spectrum: (a) 3410 cm−1 due to O-H and N-H,
(b) 2924 cm−1 due to C-H,1623 cm−1, (c) 1513cm−1 due to N–H, (d) 1088 cm−1 due to C–N,
(e) 1380 cm−1 (C-H), (f) 651 cm−1 (NH2), (g) 1248cm−1 (O-H), (h) 1153cm−1 (C-O-C). In
TCS, all characteristic peaks were observed except NH2 peaks. Additional peaks of the
newly created -CONH2 bond were also found: amide band I at 1629 cm−1, amide band at
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1524 cm−1, and thiol group peaks at 1251 cm−1 due to NH2 reaction between chitosan and
carboxyl groups of TGA [31].
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3.3.3. Differential Scanning Calorimetry (DSC)

Figure 5 illustrates the DSC thermogram of chitosan and TCS. As evident from the
thermogram, an endothermic peak was observed at 98.95 ◦C and an exothermic peak was
observed at 306.876 ◦C in a chitosan sample, and a peak at 217.2 ◦C was observed in TCS
thermogram. A peak at 217.2 ◦C was observed due to TCS, which was formed when the
chitosan was crosslinked with TGA. As evident from the DSC of chitosan, this peak was
absent. The crosslinking of chitosan with TGA [32], which was not present in chitosan, is
indicated by the considerable change in the peak and endothermic enthalpy values.

3.4. Fabrication of RIS-HA Particles

The nanoparticles prepared by combining RIS with HA in different ratios showed dif-
ferent entrapment values. Among all the different ratios, the RIS:HA ratio of 2:1 was finally
selected for further studies as it had shown higher drug entrapment value (93.97% ± 1.56)
and sufficient yield value (74.80% ± 2.61).

3.5. Experimental Design Optimization

Box–Behnken statistical design (BBD) was used to formulate and optimize the RIS-
HA-TCS nanoparticles in which the influence of different variables on the responses was
observed simultaneously [26]. Here, the impact of independent variables: (A) TPP, (B) TCS,
and (C) Drug−HA on the dependent variables (Y1) Particle size, (Y2) Polydispersity index
(PDI), and (Y3) Entrapment efficiency (EE) was observed as shown in Table 3. As depicted
in Table 4, for all the response parameters the Predicted R2 values and the Adjusted R2

values were in a reasonable agreement. To be in a reasonable agreement, the Predicted R2

and Adjusted R2 values must be within around 0.20 of one another [33]. The quadratic
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model was shown to have a low coefficient of variance across all responses, indicating its
viability for use in design space exploration. Table 4 provides a summary of the polyno-
mial equations for the dependent variables Y1, Y2, Y3. Positive signs in the polynomial
equation signified a direct correlation between the factor and responses (dependent vari-
ables), whereas negative signs represented an antagonistic connection between factors and
responses. Figure 6 shows response surface graphs.
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Table 3. The Box–Behnken experimental design of polymeric nanoparticles (RIS-HA-TCS) and
evaluated response parameters (n = 3).

Run A: TCS B: RIS-HA C: TPP Particle Size PDI EE

(mg/mL) (mg/mL) (mg/mL) (nm) (%)

1 30 15 1.5 259.63 0.255 85.37
2 30 15 1.5 256.46 0.252 85.42
3 30 20 1 288.23 0.312 88.14
4 25 15 2 207.38 0.227 79.66
5 30 10 2 214.77 0.247 80.31
6 30 15 1.5 253.82 0.252 85.73
7 35 15 2 298.16 0.283 90.67
8 25 10 1.5 163.65 0.214 71.92
9 25 15 1 198.21 0.231 77.68
10 25 20 1.5 228.24 0.238 83.47
11 35 20 1.5 326.38 0.359 93.65
12 35 10 1.5 273.28 0.273 84.68
13 30 10 1 217.23 0.238 78.34
14 35 15 1 317.17 0.326 89.23
15 30 20 2 267.12 0.275 89.83
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Table 4. Regression analysis parameters for the responses Y1, Y2, and Y3.

Models R2 R2 (Adjusted) R2 (Predicted) S.D. C.V. (%)

Response, Y1
Linear 0.9786 0.9728 0.9577 7.61 –
2F1 0.9893 0.9813 0.9574 6.31 –
Quadratic 0.9985 0.9958 0.9837 3.00 1.19
Response, Y2
Linear 0.8829 0.8509 0.7699 0.0155 –
2F1 0.9654 0.9394 0.9026 0.0099 –
Quadratic 0.9928 0.9797 0.8877 0.0057 2.16
Response, Y3
Linear 0.9799 0.9744 0.9667 0.92 –
2F1 0.9836 0.9713 0.9537 0.98 –
Quadratic 0.9994 0.9983 0.9927 0.23 0.28

Y1 = + 256.64 + 52.19 A + 30.13 B − 4.18 C − 2.87 AB − 7.04 AC − 4.66 BC − 0.1783 A2 − 8.57 B2 − 1.23 C2. Y2 = +
0.2530 + 0.0414 A + 0.0265 B − 0.0094 C + 0.00155 AB − 0.0098 AC − 0.0115 BC + 0.0084 A2 + 0.0096 B2 + 0.0054 C2.
Y3 = + 85.51 + 5.69 A + 4.98 B + 0.8850 C − 0.6450 AB − 0.1350 AC −0.0700 BC − 0.9608 A2 − 1.12 B2 − 0.2358 C2.
R2 = coefficient of correlation; S.D.= standard deviation; C.V. = Coefficient of Variation.
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3.5.1. The Effect of Independent Variables on Particle Size (Y1)

As polymer (TCS), crosslinking agent (TPP), and Drug−HA complex concentrations
were increased, particle size was shown to decrease. One possible explanation for this
finding is that the polymeric layer shrank because of increased crosslinking between
positively charged amino groups in TCS and the PO4− ions in TPP [34].

3.5.2. The Effect of Independent Variables on PDI (Y2)

Table 3 displays that the PDI value for all the produced nanoparticles was less than 0.5,
indicating a smaller size distribution [35].

3.5.3. The Effect of Independent Variables on Encapsulation Efficiency (Y3)

The effects of independent factors on %EE were explained using response surface plots,
such as the one in Figure 6, to explain the impact of factors on the encapsulation efficiency.
Due to the crosslinking of the TCS polymer and TPP as crosslinking agent, a decrease in
the amount of drug leakage was observed, but it caused nanoparticles to develop a rigid
structure [36]. These findings corroborated with an earlier study [37], where it was found
that greater drug entrapment efficiency was associated with the development of higher
disulfide bonds between TCS and PO4- ion crosslinking.

3.6. Selection of Optimized RIS-HA-TCS Nanoparticles

Using the mathematical optimization technique implemented in Design Expert® soft-
ware (V.13.0; Stat-Ease Inc., Minneapolis, MN, USA), the RIS-HA-TCS nanoparticles with
the highest % EE and the smallest particle size and PDI were selected. The formulation
containing 30 mg/mL of TCS, 15 mg/mL of Drug−HA, and 1.5 mg/mL of TPP was cre-
ated to fulfill the criterion of optimized formulation after “trading off” distinct responses
with statistical desirability function. The optimized RIS-HA-TCS nanoparticles (RUN 6)
exhibited a particle size of 252.1 ± 2.44 nm, 0.11 ± 0.01 PDI, and %EE of 85.4 ± 2.21%.

The optimized formulation was found to be an opalescent solution.
The formulation without mPEG was termed RIS-HA-TCS, and the formulation contain-

ing mPEG was represented as RIS-HA-TCS-mPEG. mPEG was used to increase the drug’s
half-life and stability. The particle size of RIS-HA-TCS-mPEG formulation was significantly
higher than RIS-HA-TCS formulation, but its PDI was lower than RIS-HA-TCS, which indi-
cated the mono-dispersity of particles. The entrapment efficiency of RIS-HA-TCS-mPEG
was high as compared to RIS-HA-TCS.

3.7. Characterization of RIS-HA-TCS and RIS-HA-TCS-mPEG
3.7.1. Particle Size and Polydispersity Index

The particle size of RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles was found
to be 252.1 ± 2.44 and 264.9 ± 1.91 nm, respectively, whereas PDI of RIS-HA-TCS and
RIS-HA-TCS-mPEG were 0.2 ± 0.01 and 0.120 ± 0.01, which indicated a mono-dispersed
system i.e., RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles were found to be uniformly
dispersed in the entire formulation. Both formulations’ particle sizes were appropriate for
oral drug administration. The PDI value closer to zero showed that the RIS-HA-TCS-mPEG
formulation was more homogeneous. These results are demonstrated in Figure 7.

3.7.2. Entrapment Efficiency (%EE)

The entrapment efficiency of RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles was
found to be 85.4 ± 2.21% and 91.1 ± 1.17%, respectively. An increase in TCS, TPP, and
Drug−HA concentrations was associated with an increase in EE percentages. This is
because the TCS polymer crosslinked with TPP formed nanoparticles with a hard structure,
reducing the drug leakage [36].
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3.7.3. Transmission Electron Microscopy Analysis

Using a transmission electron microscope, the shape morphology of RIS-HA-TCS and
RIS-HA-TCS-mPEG nanoparticles was observed. The TEM exhibited a spherical shape,
uniformly dispersed and non-aggregated NPs. The spherical nanoparticles showed that
TCS and TPP were successfully crosslinked. Specifically, the ionic gelation that gave the
nanoparticles their structural stability was caused by the crosslinking between negatively
charged phosphate ions of TPP and positively charged amine groups of TCS [38]. These
results are demonstrated in Figure 7.

3.7.4. Differential Scanning Calorimetry

The DSC thermogram of RIS, HA, mPEG, a physical mixture of excipients with drug,
fabricated RIS-HA, and optimized RIS-HA-TCS and RIS-HA-TCS-mPEG nanoparticles are
represented in Figure 8. As evident, the thermogram showed that RIS had two endothermic
peaks at 205 ◦C and 245 ◦C corresponding to the solvent loss. An exothermic peak at 265 ◦C
corresponded to the melting point of the drug [21]. As evident from the published literature,
pure mPEG showed a distinct phase transition at around 40 ◦C, and its degradation peaks
are observed at around 280 ◦C [39,40]. The endothermic peak of the HA DSC thermogram
occurred at approximately 60 ◦C, perhaps as a result of moisture loss, while the endothermic
peak occurred at approximately 270 ◦C, which was likely a result of HA degradation. As
the melting point of HA is around 1100 ◦C, it was not captured in DSC [41]. At the same
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temperature range, the DSC of drug–excipient showed that the primary peaks of the RIS
and excipients were evident, and there was no interaction between them. The RIS-HA-TCS
and RIS-HA-TCS-mPEG nanoparticles showed no sharp endothermic peak of RIS because
RIS was fully incorporated and molecularly distributed in the solid matrix in an amorphous
state. An endothermic peak at a melting point of 164.5 ◦C corresponds to the mannitol
(cryoprotectant) and was the only peak observed in nanoparticles [42].
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3.7.5. Fourier Transform Infrared Spectroscopy (FTIR) Spectra

FTIR Spectra overlay of RIS, HA, TCS, and mPEG are shown in Figure 9. The following
peaks for RIS were observed (a) 1150 cm−1 due to an aliphatic P-O stretch, (b) Aromatic P-O
stretch is at 1190 cm−1, while aromatic C-H stretch is at 3080–3010 cm−1, (c) O-H Stretch at
3609–3329 cm−1, and (d) Stretching from C-C, 1601 cm−1, and from C-N, 1430 cm−1 [21].
The spectra of TCS showed the following distinctive peaks: (a) 3410 cm−1 due to O–H
and N–H, (b) 2924 cm−1 due to C–H, (c) 1513 cm−1 due to N–H, (d) 1088 cm−1 due to
C–N, (e) 1380 cm−1 due to C–H, (f) 1248 cm−1 due to O–H, (g) 1153 cm−1 (C-O-C), and (h)
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1629 cm−1 (amide band I), (i) 1524 cm−1 (amid band II) and thiol groups represented by
1251 cm−1 peak [31]. HA was found to have a peak between 2400 and 1600 cm−1 (O=P-H
stretching) [4]. Alkane (C-H), C=C and C=0 stretch, frequencies of methoxy polyethylene
glycol molecule are responsible for the 2885, 1712, 1466, and 1111 cm−1 peaks [43]. All the
respective peaks for RIS, HA, TCS, and mPEG were also observed in the formulation.
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3.8. In Vitro Drug Release Experiment

For the purpose of measuring RIS release in vitro, the dynamic dialysis approach,
which is often used to keep nanoparticles from leaking into the dissolving medium, was
implemented [44]. In vitro experiments were performed in SIF (pH 6.8) for the optimized
RIS-HA-TCS, RIS-HA-TCS-mPEG, API suspension, and marketed formulation Figure 10.
The drug release in the first 2 h after administering RIS-HA-TCS and RIS-HA-TCS-mPEG
were found to be 52.32 ± 2.72% and 66.13 ± 2.52%, respectively, followed by a slow
drug release for the next 24 h (91.74 ± 5.14% and 95.13 ± 4.64%, respectively). Under
similar experimental conditions, pure API suspension and commercialized formulation
demonstrated 56.11 ± 5.19% and 74.69 ± 3.98% drug release over a period of 24 h when
tested for in vitro release. With an increase in polymer content, more nanoparticles were
retained by the intestinal tissue, as determined by the in vitro drug release research. These



Micromachines 2023, 14, 2182 17 of 21

findings may be attributed to the enhanced release of drug from nanoparticles firmly
adhered to the mucous layer through covalent linkage due to the presence of increased
TCS content [29]. These results were in good agreement with Zhou [45], who discovered
that the oral administration of insulin thiolated nanoparticles improved insulin adherence
to the mucosal membrane.
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3.9. Ex Vivo Intestinal Permeation Study

The gut permeability of RIS was determined using a non-everted gut permeation
investigation using nanoparticles, a drug suspension, and a commercially available prepa-
ration. This research explains how drugs are absorbed by the body once they reach the
digestive tract. In Figure 11, the intestinal penetration profile of RIS from the optimized
RIS-HA-TCS, the RIS-HA-TCS-mPEG, RIS suspension, and the commercially available
preparation is shown. Papp of the RIS-HA-TCS-mPEG nanoparticles was found to be
0.5858 ± 0.1227 × 10−4 cm/min, which was higher in comparison with RIS-HA-TCS formu-
lation 0.4011 ± 0.03938 × 10−4 cm/min, marketed preparation (0.3401 ± 0.04912 × 10−4

cm/min) and RIS suspension (0.2005 ± 0.03599 × 10−4 cm/min). Because nanoparticles
diffuse more quickly across the gut membrane [46], their tiny size and total internalization
of RIS into nanoparticles were attributed to the significantly improved release of RIS by
RIS-HA-TCS-mPEG and RIS-HA-TCS.
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4. Conclusions

In conclusion, the successfully prepared and optimized RIS-HA-TCS nanoparticles,
employing the ionic gelation method and Box–Behnken design, demonstrate promising at-
tributes for the oral treatment of osteoporosis. The PEGylation of these nanoparticles further
enhances their stability and drug half-life. Comparative analysis with RIS-HA-TCS reveals
that RIS-HA-TCS-mPEG nanoparticles exhibit superior particle size and entrapment effi-
ciency. Additionally, PEGylated nanoparticles display improved in vitro drug release and
ex vivo permeability. The notable impact of thiolated chitosan on drug release rate under-
scores its significance as a carrier for controlled oral drug administration. While presenting
a compelling approach, further investigations into pharmacokinetics, histopathology, and
pharmacodynamics are essential to validate the potential of RIS-TCS-HA, with or without
mPEG, as a novel oral therapeutic strategy for osteoporosis.
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