Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review
Abstract
:1. Introduction
2. Theoretical Methods for TBR Prediction and Experimental Methods for TBR Measurement
2.1. Thermal Boundary Resistance
2.2. Theoretical and Computational Methods for TBR Prediction
2.3. Experimental Methods for TBR Measurement
3. Effects of TBR on Thermal Management in GaN-on-SiC and GaN-on-Diamond Devices
3.1. Importance of Thermal Management in GaN-Based Semiconductor Devices
3.2. Effects of TBR on Thermal Management in GaN-on-SiC Devices
3.3. Effects of TBR on Thermal Management in GaN-on-Diamond Devices
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, L.T.; Chung, J.E.; Antoniadis, D.A.; Goodson, K.E.; Flik, M. Measurement and Modeling of Self-Heating in SOI NMOSFET’s. IEEE Trans. Electron. Devices 1994, 41, 69–75. [Google Scholar] [CrossRef]
- Takahashi, T.; Beppu, N.; Chen, K.; Oda, S.; Uchida, K. Self-Heating Effects and Analog Performance Optimization of Fin-Type Field-Effect Transistors. Jpn. J. Appl. Phys. 2013, 52, 04CC03. [Google Scholar] [CrossRef]
- Takahashi, T.; Matsuki, T.; Shinada, T.; Inoue, Y.; Uchida, K. Comparison of Self-Heating Effect (SHE) in Short-Channel Bulk and Ultra-Thin BOX SOI MOSFETs: Impacts of Doped Well, Ambient Temperature, and SOI/BOX Thicknesses on SHE. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013. [Google Scholar]
- Zhao, Y.; Qu, Y.M. Impact of Self-Heating Effect on Transistor Characterization and Reliability Issues in Sub-10 nm Technology Nodes. IEEE J. Electron. Devices Soc. 2019, 7, 829–836. [Google Scholar] [CrossRef]
- Amrouch, H.; van Santen, V.M.; Prakash, O.; Kattan, H.; Salamin, S.; Thomann, S.; Henkel, J. Reliability Challenges with Self-Heating and Aging in FinFET Technology. In Proceedings of the 2019 IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS), Rhodes, Greece, 1–3 July 2019. [Google Scholar]
- Benbakhti, B.; Soltani, A.; Kalna, K.; Rousseau, M.; De Jaeger, J.-C. Effects of Self-Heating on Performance Degradation in AlGaN/GaN-Based Devices. IEEE Trans. Electron. Devices 2009, 56, 2178–2185. [Google Scholar] [CrossRef]
- Trew, R.J.; Green, D.S.; Shealy, J.B. AlGaN/GaN HFET Reliability. IEEE Microw. Mag. 2009, 10, 116–127. [Google Scholar] [CrossRef]
- Meneghini, M.; De Santi, C.; Abid, I.; Buffolo, M.; Cioni, M.; Abdul Khadar, R.; Nela, L.; Zagni, N.; Chini, A.; Medjdoub, F.; et al. GaN-Based Power Devices: Physics, Reliability, and Perspectives. J. Appl. Phys. 2021, 130, 181101. [Google Scholar] [CrossRef]
- Chang, C.W.; Liu, S.E.; Lin, B.L.; Chiu, C.C.; Lee, Y.-H.; Wu, K. Thermal Behavior of Self-Heating Effect in FinFET Devices Acting on Back-End Interconnects. In Proceedings of the 2015 IEEE International Reliability Physics Symposium, Monterey, CA, USA, 13–23 April 2015. [Google Scholar]
- Banerjee, K.; Mehrotra, A. Global (interconnect) warming. IEEE Circuits Devices Mag. 2011, 17, 16–32. [Google Scholar] [CrossRef]
- Im, S.; Srivastava, N.; Banerjee, K.; Goodson, K.E. Scaling analysis of multilevel interconnect temperatures for high-performance ICs. IEEE Trans. Electron. Devices 2005, 52, 2710–2719. [Google Scholar] [CrossRef]
- Zhan, T.; Oda, K.; Ma, S.; Tomita, M.; Jin, Z.; Takezawa, H.; Mesaki, K.; Wu, Y.; Xu, Y.; Matsukawa, T.; et al. Effect of Thermal Boundary Resistance Between the Interconnect Metal and Dielectric Interlayer on Temperature Increase of Interconnects in Deeply Scaled VLSI. ACS Appl. Mater. Interfaces 2020, 12, 22347–22356. [Google Scholar] [CrossRef]
- Zhan, T.; Sahara, K.; Takeuchi, H.; Yokogawa, R.; Oda, K.; Jin, Z.; Deng, S.; Tomita, M.; Wu, Y.; Xu, Y.; et al. Modification and Characterization of Interfacial Bonding for Thermal Management of Ruthenium Interconnects in Next-Generation Very-Large-Scale Integration Circuits. ACS Appl. Mater. Interfaces 2022, 14, 7392–7404. [Google Scholar] [CrossRef]
- Zhang, G.; Lai, J.; Su, Y.; Li, B.; Li, B.; Bu, J.; Yang, C.-F. Study on the Thermal Conductivity Characteristics for Ultra-Thin Body FD SOI MOSFETs Based on Phonon Scattering Mechanisms. Materials 2019, 12, 2601. [Google Scholar] [CrossRef] [PubMed]
- Chhabria, V.A.; Sapatnekar, S.S. Impact of Self-heating on Performance and Reliability in FinFET and GAAFET Designs. In Proceedings of the 20th International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 6–7 March 2019. [Google Scholar]
- Nazari, M.; Hancock, B.L.; Piner, E.L.; Holtz, M.W. Self-heating in a GaN-based Heterojunction Field-Effect Transistor Investigated by Ultraviolet and Visible Micro-Raman Spectroscopy. In Proceedings of the 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, USA, 11–14 October 2015. [Google Scholar]
- Giri, A.; Hopkins, P.E. A Review of Experimental and Computational Advances in Thermal Boundary Conductance and Nanoscale Thermal Transport across Solid Interfaces. Adv. Funct. Mater. 2020, 30, 1903857. [Google Scholar] [CrossRef]
- Chang, Y.C.; Huang, M.L.; Chang, Y.H.; Lee, Y.J.; Chiu, H.C.; Kwo, J.; Hong, M. Atomic-Layer-Deposited Al2O3 and HfO2 on GaN: A Comparative Study on Interfaces and Electrical Characteristics. Microelectron. Eng. 2011, 88, 1207–1210. [Google Scholar] [CrossRef]
- Nogami, T. Interconnect Technologies and Materials for Logic at 2 nm and beyond. JSAP Rev. 2023, 2023, 230210. [Google Scholar]
- Regner, K.T.; Sellan, D.P.; Su, Z.; Amon, C.H.; McGaughey, A.J.H.; Malen, J.A. Broadband Phonon Mean Free Path Contributions to Thermal Conductivity Measured Using Frequency Domain Thermoreflectance. Nat. Commun. 2013, 4, 1640. [Google Scholar] [CrossRef]
- Qiu, B.; Tian, Z.; Vallabhaneni, A.; Liao, B.; Mendoza, J.M.; Restrepo, O.D.; Ruan, X.; Chen, G. First-Principles Simulation of Electron Mean-Free-path Spectra and Thermoelectric Properties in Silicon. EPL 2015, 109, 57006. [Google Scholar] [CrossRef]
- Gall, D. Electron mean free path in elemental metals. J. Appl. Phys. 2016, 119, 085101. [Google Scholar] [CrossRef]
- Barua, A.; Hossain, M.S.; Masood, K.I.; Subrina, S. Thermal Management in 3-D Integrated Circuits with Graphene Heat Spreaders. Phys. Procedia 2012, 25, 311–316. [Google Scholar] [CrossRef]
- Anufriev, R.; Gluchko, S.; Volz, S.; Nomura, M. Quasi-Ballistic Heat Conduction due to Lévy Phonon Flights in Silicon Nanowires. ACS Nano 2018, 12, 11928–11935. [Google Scholar] [CrossRef]
- Lyeo, H.-K.; Cahill, D.G. Thermal Conductance of Interfaces Between Highly Dissimilar Materials. Phys. Rev. B 2006, 73, 144301. [Google Scholar] [CrossRef]
- Costescu, R.M.; Wall, M.A.; Cahill, D.G. Thermal Conductance of Epitaxial Interfaces. Phys. Rev. B 2003, 67, 054302. [Google Scholar] [CrossRef]
- Grujicic, M.; Zhao, C.L.; Dusel, E.C. The Effect of Thermal Contact Resistance on Heat Management in The Electronic Packaging. Appl. Surf. Sci. 2005, 246, 290–302. [Google Scholar] [CrossRef]
- Swartz, E.T.; Pohl, R.O. Thermal Boundary Resistance. Rev. Mod. Phys. 1989, 61, 605–668. [Google Scholar] [CrossRef]
- Giri, A.; King, S.W.; Lanford, W.A.; Mei, A.B.; Merrill, D.; Li, L.; Oviedo, R.; Richards, J.; Olson, D.H.; Braun, J.L.; et al. Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance. Adv. Mater. 2018, 30, 1804097. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, P.E.; Phinney, L.M.; Serrano, J.R.; Beechem, T.E. Effects of Surface Roughness and Oxide Layer on The Thermal Boundary Conductance at Aluminum/Silicon Interfaces. Phys. Rev. B 2010, 82, 085307. [Google Scholar] [CrossRef]
- Hopkins, P.E.; Norris, P.M.; Stevens, R.J.; Beechem, T.E.; Graham, S. Influence of Interfacial Mixing on Thermal Boundary Conductance Across a Chromium/Silicon Interface. J. Heat Transfer. 2008, 130, 062402. [Google Scholar] [CrossRef]
- Collins, K.; Chen, C.S.; Chen, G. Effects of Surface Chemistry on Thermal Conductance at Aluminum–Diamond Interfaces. Appl. Phys. Lett. 2010, 97, 083102. [Google Scholar] [CrossRef]
- Xu, Y.; Kato, R.; Goto, M. Effect of Microstructure on Au/Sapphire Interfacial Thermal Resistance. J. Appl. Phys. 2010, 108, 104317. [Google Scholar] [CrossRef]
- Zhan, T.; Xu, Y.; Goto, M.; Tanaka, Y.; Kato, R.; Sasaki, M. Thermal Boundary Resistance at Au/Ge/Ge and Au/Si/Ge Interfaces. RSC Adv. 2015, 5, 49703–49707. [Google Scholar] [CrossRef]
- Zhan, T.; Goto, M.; Xu, Y.; Kinoshita, Y.; Ishikiriyama, M.; Nishimura, C. Modification of Thermal Conductivity and Thermal Boundary Resistance of Amorphous Si Thin Films by Al Doping. RSC Adv. 2017, 7, 7901–7905. [Google Scholar] [CrossRef]
- Goto, M.; Xu, Y.; Zhan, T.; Sasaki, M.; Nishimura, C.; Kinoshita, Y.; Ishikiriyama, M. Ultra-Low Thermal Conductivity of High-Interface Density Si/Ge Amorphous Multilayers. Appl. Phys. Express 2018, 11, 045202. [Google Scholar] [CrossRef]
- Zhan, T.; Yamato, R.; Hashimoto, S.; Tomita, M.; Oba, S.; Himeda, Y.; Mesaki, K.; Takezawa, H.; Yokogawa, R.; Xu, Y.; et al. Miniaturized Planar Si-Nanowire Microthermoelectric Generator Using Exuded Thermal Field for Power Generation. Sci. Technol. Adv. Mater. 2018, 19, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Ma, S.; Jin, Z.; Takezawa, H.; Mesaki, K.; Tomita, M.; Wu, Y.; Xu, Y.; Matsukawa, T.; Matsuki, T.; et al. Effect of The Thermal Boundary Resistance in Metal/Dielectric Thermally Conductive Layers on Power Generation of Silicon Nanowire Microthermoelectric Generators. ACS Appl. Mater. Interfaces 2020, 12, 34441–34450. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.J.; Shenogin, S.; Liu, J.; Chow, P.K.; Laurencin, D.; Mutin, P.H.; Yamaguchi, M.; Keblinski, P.; Ramanath, G. Bonding-Induced Thermal Conductance Enhancement at Inorganic Heterointerfaces Using Nanomolecular Monolayers. Nat. Mater. 2013, 12, 118–122. [Google Scholar] [CrossRef]
- Losego, M.D.; Grady, M.E.; Sottos, N.R.; Cahill, D.G.; Braun, P.V. Effects of Chemical Bonding on Heat Transport Across Interfaces. Nat. Mater. 2012, 11, 502–506. [Google Scholar] [CrossRef]
- Cui, L.; Miao, R.; Jiang, C.; Meyhofer, E.; Reddy, P. Perspective: Thermal and thermoelectric transport in molecular junctions. J. Chem. Phys. 2017, 146, 092201. [Google Scholar] [CrossRef]
- Park, S.; Jang, J.; Kim, H.; Park, D.I.; Kim, K.; Yoon, H.J. Thermal conductance in single molecules and self-assembled monolayers: Physicochemical insights, progress, and challenges. J. Mater. Chem. A 2020, 8, 19746–19767. [Google Scholar] [CrossRef]
- Stevens, R.J.; Zhigilei, L.V.; Norris, P.M. Effects of Temperature and Disorder on Thermal Boundary Conductance at Solid–Solid Interfaces: Nonequilibrium Molecular Dynamics Simulations. Int. J. Heat Mass Transf. 2007, 50, 3977–3989. [Google Scholar] [CrossRef]
- Landry, E.S.; McGaughey, A.J.H. Thermal Boundary Resistance Predictions from Molecular Dynamics Simulations and Theoretical Calculations. Phys. Rev. B 2009, 80, 165304. [Google Scholar] [CrossRef]
- Zhan, T.; Minamoto, S.; Xu, Y.; Tanaka, Y.; Kagawa, Y. Thermal Boundary Resistance at Si/Ge Interfaces by Molecular Dynamics Simulation. AIP Adv. 2015, 5, 047102. [Google Scholar] [CrossRef]
- Sadasivam, S.; Waghmare, U.V.; Fisher, T.S. Electron-Phonon Coupling and Thermal Conductance at A Metal-Semiconductor Interface: First-Principles Analysis. J. Appl. Phys. 2015, 117, 134502. [Google Scholar] [CrossRef]
- Zhou, X.; Jankowska, J.; Li, L.; Giri, A.; Hopkins, P.E.; Prezhdo, O.V. Strong Influence of Ti Adhesion Layer on Electron–Phonon Relaxation in Thin Gold Films: Ab Initio Nonadiabatic Molecular Dynamics. ACS Appl. Mater. Interfaces 2017, 9, 43343–43351. [Google Scholar] [CrossRef] [PubMed]
- Zhan, T.; Fang, L.; Xu, Y. Prediction of Thermal Boundary Resistance by The Machine Learning Method. Sci. Rep. 2017, 7, 7109. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, L.; Xu, Y. Predicting Interfacial Thermal Resistance by Machine Learning. NPJ Comput. Mater. 2019, 5, 56. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Zhan, T.; Hou, Z.; Fang, L.; Xu, Y. Physical and Chemical Descriptors for Predicting Interfacial Thermal Resistance. Sci. Data 2020, 7, 36. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, S.; Rong, Q.; Bao, H. Predicting the effective thermal conductivities of composite materials and porous media by machine learning methods. Int. J. Heat Mass Transf. 2018, 127, 908–916. [Google Scholar] [CrossRef]
- Wan, X.; Feng, W.; Wang, Y.; Wang, H.; Zhang, X.; Deng, C.; Yang, N. Materials Discovery and Properties Prediction in Thermal Transport via Materials Informatics: A Mini Review. Nano Lett. 2019, 19, 3387–3395. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, Z.; Guo, Y.; Chen, J.; Nomura, M.; Volz, S. Optimization of Interfacial Thermal Transport in Si/Ge Heterostructure Driven by Machine Learning. Int. J. Heat Mass Transf. 2022, 182, 122014. [Google Scholar] [CrossRef]
- Vu, A.T.; Gulati, S.; Vogel, P.-A.; Grunwald, T.; Bergs, T. Machine Learning-Based Predictive Modeling of Contact Heat Transfer. Int. J. Heat Mass Transf. 2021, 174, 121300. [Google Scholar] [CrossRef]
- Tian, X.; Chen, M. Descriptor Selection for Predicting Interfacial Thermal Resistance by Machine Learning Methods. Sci. Rep. 2021, 11, 739. [Google Scholar] [CrossRef]
- Foss, C.; Aksamija, Z. Machine Learning Enables Robust Prediction of Thermal Boundary Conductance of 2D Substrate Interfaces. Appl. Phys. Lett. 2023, 122, 062201. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.; Tian, B.; Al-Hadeethi, Y.M.; Arkook, B.; Tian, X.; Zhang, X. Predicting Interfacial Thermal Resistance by Ensemble Learning. Computation 2021, 9, 87. [Google Scholar] [CrossRef]
- Cahill, D.G. Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method. Rev. Sci. Instrum. 1990, 61, 802–808. [Google Scholar] [CrossRef]
- Monachon, C.; Weber, L.; Dames, C. Thermal Boundary Conductance: A Materials Science Perspective. Annu. Rev. Mater. Res. 2016, 46, 433–463. [Google Scholar] [CrossRef]
- Su, Z.; Freedman, J.P.; Leach, J.H.; Preble, E.A.; Davis, R.F.; Malen, J.A. The Impact of Film Thickness and Substrate Surface Roughness on The Thermal Resistance of Aluminum Nitride Nucleation Layers. J. Appl. Phys. 2013, 113, 213502. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, W.; Yue, Y.; Wu, S. In-Situ Two-Step Raman Thermometry for Thermal Characterization of Monolayer Graphene Interface Material. Appl. Therm. Eng. 2017, 113, 481–489. [Google Scholar] [CrossRef]
- Cheaito, R.; Gorham, C.S.; Misra, A.; Hattar, K.; Hopkins, P.E. Thermal Conductivity Measurements Via Time-Domain Thermoreflectance for The Characterization of Radiation Induced Damage. J. Mater. Res. 2015, 30, 1403–1412. [Google Scholar] [CrossRef]
- Sarua, A.; Ji, H.; Kuball, M.; Uren, M.J.; Martin, T.; Hilton, K.P.; Balmer, R.S. Integrated Micro-Raman/Infrared Thermography Probe for Monitoring of Self-Heating in AlGaN/GaN Transistor Structures. IEEE Trans. Electron. Devices 2006, 53, 2438–2447. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, J.; Wang, X. Micro/Nanoscale Spatial Resolution Temperature Probing for the Interfacial Thermal Characterization of Epitaxial Graphene on 4H-SiC. Small 2011, 7, 3324–3333. [Google Scholar] [CrossRef]
- Liu, Y.; Ong, Z.-Y.; Wu, J.; Zhao, Y.; Watanabe, K.; Taniguchi, T.; Chi, D.; Zhang, G.; Thong, J.T.L.; Qiu, C.-W.; et al. Thermal Conductance of the 2D MoS2/h-BN and graphene/h-BN Interfaces. Sci. Rep. 2017, 7, 43886. [Google Scholar] [CrossRef]
- Kato, R.; Xu, Y.; Goto, M. Development of a frequency-domain method using completely optical techniques for measuring the interfacial thermal resistance between the metal film and the substrate. Jpn. J. Appl. Phys. 2011, 50, 106602. [Google Scholar] [CrossRef]
- Zhan, T.; Xu, Y.; Goto, M.; Tanaka, Y.; Kato, R.; Sasaki, M.; Kagawa, Y. Phonons with long mean free paths in a-Si and a-Ge. Appl. Phys. Lett. 2014, 104, 071911. [Google Scholar] [CrossRef]
- Zhan, T.; Xu, Y.; Goto, M.; Tanaka, Y.; Kato, R.; Sasaki, M.; Kagawa, Y. Thermal conductivity of sputtered amorphous Ge films. AIP Adv. 2014, 4, 027126. [Google Scholar] [CrossRef]
- Cahill, D.G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 2004, 75, 5119–5122. [Google Scholar] [CrossRef]
- Zhao, D.; Qian, X.; Gu, X.; Jajja, S.A.; Yang, R. Measurement Techniques for Thermal Conductivity and Interfacial Thermal Conductance of Bulk and Thin Film Materials. J. Electron. Packag. Trans. ASME 2016, 138, 040802. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.; et al. The 2018 GaN Power Electronics Roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Cho, J.; Li, Z.; Bozorg-Grayeli, E.; Kodama, T.; Francis, D.; Ejeckam, F.; Faili, F.; Asheghi, M.; Goodson, K.E. Improved Thermal Interfaces of GaN-Diamond Composite Substrates for HEMT Applications. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 79–85. [Google Scholar] [CrossRef]
- Song, C.; Kim, J.; Cho, J. The Effect of GaN Epilayer Thickness on The Near-Junction Thermal Resistance of GaN-on-Diamond Devices. Int. J. Heat Mass Transf. 2020, 158, 119992. [Google Scholar] [CrossRef]
- Bar-Cohen, A.; Maurer, J.J.; Altman, D.H. Embedded Cooling for Wide Bandgap Power Amplifiers: A Review. J. Electron. Packag. 2019, 141, 040803. [Google Scholar] [CrossRef]
- Morkoc, H. Nitride Semiconductors and Devices; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Hirama, K.; Taniyasu, Y.; Kasu, M. AlGaN/GaN High-Electron Mobility Transistors with Low Thermal Resistance Grown on Single-Crystal Diamond (111) Substrates by Metalorganic Vapor-Phase Epitaxy. Appl. Phys. Lett. 2011, 98, 162112. [Google Scholar] [CrossRef]
- Sang, L. Diamond as The Heat Spreader for The Thermal Dissipation of GaN-Based Electronic Devices. Funct. Diam. 2021, 1, 174–188. [Google Scholar] [CrossRef]
- Park, K.; Bayram, C. Thermal Resistance Optimization of GaN/Substrate Stacks Considering Thermal Boundary Resistance and Temperature-Dependent Thermal Conductivity. Appl. Phys. Lett. 2016, 109, 151904. [Google Scholar] [CrossRef]
- Gaska, R.; Osinsky, A.; Yang, J.W.; Shur, M.S. Self-Heating in High-Power AlGaN-GaN HFET’s. IEEE Electron. Device Lett. 1998, 19, 89–91. [Google Scholar] [CrossRef]
- Kuzmík, J.; Bychikhin, S.; Pogany, D.; Gaquière, C.; Pichonat, E.; Morvan, E. Investigation of The Thermal Boundary Resistance at the III-Nitride/Substrate Interface Using Optical Methods. J. Appl. Phys. 2007, 101, 054508. [Google Scholar] [CrossRef]
- Kuzmík, J.; Bychikhin, S.; Neuburger, M.; Dadgar, A.; Krost, A.; Kohn, E.; Pogany, D. Transient Thermal Characterization of AlGaN/GaN HEMTs Grown on Silicon. IEEE Trans. Electron. Devices 2005, 52, 1698–1705. [Google Scholar] [CrossRef]
- Sarua, A.; Ji, H.; Hilton, K.P.; Wallis, D.J.; Uren, M.J.; Martin, T.; Kuball, M. Thermal Boundary Resistance Between GaN and Substrate in AlGaN/GaN Electronic Devices. IEEE Trans. Electron. Devices 2007, 54, 3152–3158. [Google Scholar] [CrossRef]
- Cho, J.; Li, Y.; Hoke, W.E.; Altman, D.H.; Asheghi, M.; Goodson, K.E. Phonon Scattering in Strained Transition Layers for GaN Heteroepitaxy. Phys. Rev. B 2014, 89, 115301. [Google Scholar] [CrossRef]
- Chen, J.-T.; Pomeroy, J.W.; Rorsman, N.; Xia, C.; Virojanadara, C.; Forsberg, U.; Kuball, M.; Janzén, E. Low Thermal Resistance of a GaN-on-SiC Transistor Structure with Improved Structural Properties at The Interface. J. Cryst. Growth 2015, 428, 54–58. [Google Scholar] [CrossRef]
- Manoi, A.; Pomeroy, J.W.; Killat, N.; Kuball, M. Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure. IEEE Electron. Device Lett. 2010, 31, 1395–1397. [Google Scholar] [CrossRef]
- Riedel, G.J.; Pomeroy, J.W.; Hilton, K.P.; Maclean, J.O.; Wallis, D.J.; Uren, M.J.; Martin, T.; Forsberg, U.; Lundskog, A.; Kakanakova-Georgieva, A.; et al. Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers. IEEE Trans. Electron. Devices 2009, 30, 103–106. [Google Scholar] [CrossRef]
- Feng, Y.; Sun, H.; Yang, X.; Liu, K.; Zhang, J.; Shen, J.; Liu, D.; Cai, Z.; Xu, F.; Tang, N.; et al. High Quality GaN-on-SiC with Low Thermal Boundary Resistance by Employing an Ultrathin AlGaN Buffer Layer. Appl. Phys. Lett. 2021, 118, 052104. [Google Scholar] [CrossRef]
- Ziade, E.; Yang, J.; Brummer, G.; Nothern, D.; Moustakas, T.; Schmidt, A.J. Thermal Transport Through GaN-SiC Interfaces from 300 to 600 K. Appl. Phys. Lett. 2015, 107, 091605. [Google Scholar] [CrossRef]
- Mu, F.; Cheng, Z.; Shi, J.; Shin, S.; Xu, B.; Shiomi, J.; Graham, S.; Suga, T. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces. ACS Appl. Mater. Interfaces 2019, 11, 33428–33434. [Google Scholar] [CrossRef]
- Filippov, K.A.; Balandin, A.A. The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs. MRS Internet J. Nitride Semicond. Res. 2003, 8, 4. [Google Scholar] [CrossRef]
- Lee, E.; Zhang, T.; Hu, M.; Luo, T. Thermal Boundary Conductance Enhancement using Experimentally Achievable Nanostructured Interfaces-Analytical Study Combined with Molecular Dynamics Simulation. Phys. Chem. Chem. Phys. 2016, 18, 16794–16801. [Google Scholar] [CrossRef]
- Lee, E.; Luo, T. Thermal Transport across Solid-Solid Interfaces Enhanced by Pre-Interface Isotope-Phonon Scattering. Appl. Phys. Lett. 2018, 112, 011603. [Google Scholar] [CrossRef]
- Hu, M.; Poulikakos, D. Graphene Mediated Thermal Resistance Reduction at Strongly Coupled Interfaces. Int. J. Heat Mass Transfer 2013, 62, 205–213. [Google Scholar] [CrossRef]
- Zhou, Y.; Ramaneti, R.; Anaya, J.; Korneychuk, S.; Derluyn, J.; Sun, H.; Pomeroy, J.; Verbeeck, J.; Haenen, K.; Kuball, M. Thermal Characterization of Polycrystalline Diamond Thin Film Heat Spreaders Grown on GaN HEMTs. Appl. Phys. Lett. 2017, 111, 041901. [Google Scholar] [CrossRef]
- Hageman, P.R.; Schermer, J.J.; Larsen, P.K. GaN Growth on Single-Crystal Diamond Substrates by Metalorganic Chemical Vapor Deposition and Hydride Vapour Deposition. Thin Solid Films 2003, 443, 9–13. [Google Scholar] [CrossRef]
- Liang, J.; Nakamura, Y.; Zhan, T.; Ohno, Y.; Shimizu, Y.; Katayama, K.; Watanabe, T.; Yoshida, H.; Nagai, Y.; Wang, H.; et al. Fabrication of high-quality GaAs/diamond heterointerface for thermal management applications. Diam. Relat. Mater. 2021, 111, 108207. [Google Scholar] [CrossRef]
- Liang, J.; Kobayashi, A.; Shimizu, Y.; Ohno, Y.; Kim, S.-W.; Koyama, K.; Kasu, M.; Nagai, Y.; Shigekawa, N. Fabrication of GaN/diamond heterointerface and interfacial chemical bonding state for highly efficient device design. Adv. Mater. 2021, 33, 2104564. [Google Scholar] [CrossRef]
- Waller, W.M.; Pomeroy, J.W.; Field, D.; Smith, E.J.W.; May, P.W.; Kuball, M. Thermal Boundary Resistance of Direct van der Waals Bonded GaN-on-Diamond. Semicond. Sci. Technol. 2020, 35, 095021. [Google Scholar] [CrossRef]
- Field, D.E.; Cuenca, J.A.; Smith, M.; Fairclough, S.M.; Massabuau, F.C.-P.; Pomeroy, J.W.; Williams, O.; Oliver, R.A.; Thayne, I.; Kuball, M. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond. ACS Appl. Mater. Interfaces 2020, 12, 54138–54145. [Google Scholar] [CrossRef] [PubMed]
- Siddique, A.; Ahmed, R.; Anderson, J.; Nazari, M.; Yates, L.; Graham, S.; Holtz, M.; Piner, E.L. Structure and Interface Analysis of Diamond on an AlGaN/GaN HEMT Utilizing an in Situ SiNx Interlayer Grown by MOCVD. ACS Appl. Electron. Mater. 2019, 1, 1387–1399. [Google Scholar] [CrossRef]
- Mandal, S.; Yuan, C.; Massabuau, F.; Pomeroy, J.W.; Cuenca, J.; Bland, H.; Thomas, E.; Wallis, D.; Batten, T.; Morgan, D.; et al. Thick, Adherent Diamond Films on AlN with Low Thermal Barrier Resistance. ACS Appl. Mater. Interfaces 2019, 11, 40826–40834. [Google Scholar] [CrossRef]
- Zhou, Y.; Anaya, J.; Pomeroy, J.; Sun, H.; Gu, X.; Xie, A.; Beam, E.; Becker, M.; Grotjohn, T.A.; Lee, C.; et al. Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling. ACS Appl. Mater. Interfaces 2017, 9, 34416–34422. [Google Scholar] [CrossRef]
- Yates, L.; Anderson, J.; Gu, X.; Lee, C.; Bai, T.; Mecklenburg, M.; Aoki, T.; Goorsky, M.S.; Kuball, M.; Piner, E.L.; et al. Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices. ACS Appl. Mater. Interfaces 2018, 10, 24302–24309. [Google Scholar] [CrossRef]
- Huang, X.; Guo, Z. Thermal Effect of Epilayer on Phonon Transport of Semiconducting Heterostructure Interfaces. Int. J. Heat Mass Transf. 2021, 178, 121613. [Google Scholar] [CrossRef]
- Jia, X.; Wei, J.; Kong, Y.; Li, C.; Liu, J.; Chen, L.; Sun, F.; Wang, X. The Influence of Dielectric Layer on The Thermal Boundary Resistance of GaN-on-Diamond Substrate. Surf. Interface Anal. 2019, 51, 783–790. [Google Scholar] [CrossRef]
- Sun, H.; Simon, R.B.; Pomeroy, J.W.; Francis, D.; Faili, F.; Twitchen, D.J.; Kuball, M. Reducing GaN-on-Diamond Interfacial Thermal Resistance for High Power Transistor Applications. Appl. Phys. Lett. 2015, 106, 111906. [Google Scholar] [CrossRef]
- Cho, J.; Francis, D.; Altman, D.H.; Asheghi, M.; Goodson, K.E. Phonon Conduction in GaN-Diamond Composite Substrates. J. Appl. Phys. 2017, 121, 055105. [Google Scholar] [CrossRef]
- Pomeroy, J.W.; Bernardoni, M.; Dumka, D.C.; Fanning, D.M.; Kuball, M. Low Thermal Resistance GaN-on-Diamond Transistors Characterized by Three-Dimensional Raman Thermography Mapping. Appl. Phys. Lett. 2014, 104, 083513. [Google Scholar] [CrossRef]
- Malakoutian, M.; Field, D.E.; Hines, N.J.; Pasayat, S.; Graham, S.; Kuball, M.; Chowdhury, S. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling. ACS Appl. Mater. Interfaces 2021, 13, 60553–60560. [Google Scholar] [CrossRef]
- Jia, X.; Huang, L.; Sun, M.; Zhao, X.; Wei, J.; Li, C. The Effect of Interlayer Microstructure on the Thermal Boundary Resistance of GaN-on-Diamond Substrate. Coatings 2022, 12, 672. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.; Ma, G.; Zhi, J.; Yuan, C.; Sun, H.; Ma, Y.; Gao, J.; Wang, Y.; Yu, S. Effect of Bias-Enhanced Nucleation on The Microstructure and Thermal Boundary Resistance of GaN/SiNx/Diamond Multilayer Composites. Mater. Charact. 2023, 201, 112985. [Google Scholar] [CrossRef]
- Sun, H.; Pomeroy, J.W.; Simon, R.B.; Francis, D.; Faili, F.; Twitchen, D.J.; Kuball, M. Temperature-Dependent Thermal Resistance of GaN-on-Diamond HEMT Wafers. IEEE Trans. Electron. Devices 2016, 31, 621–624. [Google Scholar] [CrossRef]
- Cheng, Z.; Mu, F.; Yates, L.; Suga, T.; Graham, S. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices. ACS Appl. Mater. Interfaces 2020, 12, 8376–8384. [Google Scholar] [CrossRef]
- Dumka, D.C.; Chou, T.M.; Jimenez, J.L.; Fanning, D.M.; Francis, D.; Faili, F.; Ejeckam, F.; Bernardoni, M.; Pomeroy, J.W.; Kuball, M. Electrical and Thermal Performance of AlGaN/GaN HEMTs on Diamond Substrate for RF Applications. In Proceedings of the 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, 13–16 October 2013. [Google Scholar]
- Guo, H.; Kong, Y.; Chen, T. Impact of Thermal Boundary Resistance on The Thermal Design of GaN-on-Diamond HEMTs. In Proceedings of the 69th IEEE Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019. [Google Scholar]
- Tao, L.; Sreenivasan, S.T.; Shahsavari, R. Interlaced, Nanostructured Interface with Graphene Buffer Layer Reduces Thermal Boundary Resistance in Nano/Microelectronic Systems. ACS Appl. Mater. Interfaces 2017, 9, 989–998. [Google Scholar] [CrossRef]
Interface | Growth Method | Interlayer | TBR (m2 K/GW) | Measurement Method | References |
---|---|---|---|---|---|
GaN/Si | MOCVD | Unknown | ~70 | TIM and Raman | Kuzmík [81,82] |
GaN/4H-SiC | MOCVD | Unknown | ~120 | TIM | Kuzmík [81] |
GaN/Sapphire | MOCVD | Unknown | Unknown | TIM | Kuzmík [81] |
GaN/Si | Unknown | Unknown | ~33 | Raman | Sarua [83] |
GaN/4H-SiC | Unknown | Unknown | ~33 | Raman | Sarua [83] |
GaN/Sapphire | Unknown | Unknown | ~120 | Raman | Sarua [83] |
GaN/Si | MBE | 38 nm | ~7.8 | TDTR | Cho [84] |
GaN/4H-SiC | MOCVD | 36 nm | ~5.3 | TDTR | Cho [84] |
GaN/4H-SiC | MOCVD | 105 nm AlN | ~33 | Raman | Chen [85] |
GaN/4H-SiC | MOCVD | 35 nm AlN | ~13 | Raman | Chen [85] |
GaN/4H-SiC | MOCVD | 40–200 nm AlN | 10–50 | Raman | Manoi [86] |
GaN/4H-SiC | MOCVD | 40 nm AlN | ~43 | Raman | Riedel [87] |
GaN/4H-SiC | MOCVD | 30 nm AlN | ~35 | Raman | Riedel [87] |
GaN/6H-SiC | MOCVD | 80 nm AlN | ~25 | Raman | Riedel [87] |
GaN/4H-SiC | CMP-SiC | AlN | ~5.1 | 3ω | Su [60] |
GaN/4H-SiC | MP-SiC | AlN | ~94 | 3ω | Su [60] |
GaN/4H-SiC | MOCVD | 90 nm AlN | ~25 | TTR | Feng [88] |
GaN/4H-SiC | MOCVD | Ultrathin AlGaN | ~20 | TTR | Feng [88] |
GaN/4H-SiC | MBE | None | ~4.3 | FDTR | Ziade [89] |
GaN/4H-SiC | SAB | None | ~5.9 | TDTR | Mu [90] |
GaN/4H-SiC | SAB | None | ~4.3 | TDTR | Mu [90] |
GaN/6H-SiC | Simulation | None | ~1 | DMM | Filippov [91] |
GaN/6H-SiC | Simulation | None | ~2.1 | MD | Lee [92,93] |
GaN/6H-SiC | Simulation | None | ~2.4 | MD | Hu [94] |
Interface | Growth Method | Interlayer | TBR (m2 K/GW) | Measurement Method | Reference |
---|---|---|---|---|---|
GaN/Diamond | Direct bonding | None | ~220 | TTR | Waller [99] |
AlGaN/Diamond | MPCVD | None | ~107 | TTR | Field [100] |
AlGaN/Diamond | MPCVD | 10 nm SiC | ~30 | TTR | Field [100] |
GaN/Diamond | HFCVD | 46 nm SiNx | ~52.8 | TDTR | Siddique [101] |
AlN/Diamond | MPCVD | None | ~16 | TTR | Mandala [102] |
GaN/Diamond | MPCVD | None | ~61.1 | TTR | Zhou [103] |
GaN/Diamond | MPCVD | 5 nm AlN | ~15.9 | TTR | Zhou [103] |
GaN/Diamond | MPCVD | 5 nm SiN | ~6.5 | TTR | Zhou [103] |
GaN/Diamond | MPCVD | None | ~41.4 | TDTR | Yates [104] |
GaN/Diamond | MPCVD | 5 nm AlN | ~18.2 | TDTR | Yates [104] |
GaN/Diamond | MPCVD | 5 nm SiN | ~9.5 | TDTR | Yates [104] |
GaN/Diamond | Simulation | 5 nm Si3N4 | ~4.58 | DFT | Huang [105] |
GaN/Diamond | Simulation | 5 nm AlN | ~5.04 | DFT | Huang [105] |
GaN/Diamond | Simulation | 5 nm Si | ~8.48 | DFT | Huang [105] |
GaN/Diamond | MPCVD | 100 nm SiN | ~38.5 | TDTR | Jia [106] |
GaN/Diamond | MPCVD | 100 nm AlN | ~56.4 | TDTR | Jia [106] |
GaN/Diamond | MPCVD | 28–100 nm SiNx | 12–50 | TTR | Sun [107] |
GaN/Diamond | HFCVD | 31 nm SiN | ~31.8 | TDTR | Cho [108] |
GaN/Diamond | MPCVD | 22 nm SiN | ~19.8 | TDTR | Cho [108] |
GaN/Diamond | CVD | 25 nm dielectric | ~27 | Raman | Pomeroy [109] |
GaN/Diamond | CVD | 50 nm dielectric | ~35.7 | Raman | Pomeroy [109] |
GaN/Diamond | MPCVD | 1 nm Si3N4 | ~3.1 | TTR | Malakoutian [110] |
GaN/Diamond | MPCVD | 100 nm SiNx | ~40.5 | TDTR | Jia [111] |
GaN/Diamond | MPCVD | 100 nm SiNx periodic pattern | ~32.2 | TDTR | Jia [111] |
GaN/Diamond | MPCVD | 80 nm SiNx | ~38.8 | TDTR | Jia [111] |
GaN/Diamond | MPCVD | 70 nm SiNx | ~83 | TTR | Wang [112] |
GaN/Diamond | MPCVD | 35 nm SiNx | ~26 | TTR | Wang [112] |
GaN/Diamond | MPCVD | 40 nm SiNx | ~26 | TTR | Sun [113] |
GaN/Diamond | MPCVD | 40 nm SiNx | ~33 | TTR | Sun [113] |
GaN/Diamond | SAB | Si | ~19.2 | TDTR | Cheng [114] |
GaN/Diamond | SAB | Si | ~10.9 | TDTR | Cheng [114] |
GaN/Diamond | CVD | 50 nm dielectric | ~18 | Raman | Dumka [115] |
GaN/Diamond | Simulation | None | ~3 | DMM | Zhou [103] |
GaN/Diamond | Simulation | None | 16–120 | MD | Tao [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, T.; Xu, M.; Cao, Z.; Zheng, C.; Kurita, H.; Narita, F.; Wu, Y.-J.; Xu, Y.; Wang, H.; Song, M.; et al. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review. Micromachines 2023, 14, 2076. https://doi.org/10.3390/mi14112076
Zhan T, Xu M, Cao Z, Zheng C, Kurita H, Narita F, Wu Y-J, Xu Y, Wang H, Song M, et al. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review. Micromachines. 2023; 14(11):2076. https://doi.org/10.3390/mi14112076
Chicago/Turabian StyleZhan, Tianzhuo, Mao Xu, Zhi Cao, Chong Zheng, Hiroki Kurita, Fumio Narita, Yen-Ju Wu, Yibin Xu, Haidong Wang, Mengjie Song, and et al. 2023. "Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review" Micromachines 14, no. 11: 2076. https://doi.org/10.3390/mi14112076