Effect of Composition Adjustment on the Thermoelectric Properties of Mg3Bi2-Based Thermoelectric Materials
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Synthesis
2.2. Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DiSalvo, F.J. Thermoelectric cooling and power generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Achour, A.; Chen, K.; Reece, M.J.; Huang, Z. Tuning of catalytic activity by thermoelectric materials for carbon dioxide hydrogenation. Adv. Energ. Mater. 2018, 8, 1701430. [Google Scholar] [CrossRef]
- Shi, X.; Chen, L. Thermoelectric materials step up. Nat. Mater. 2016, 15, 691–692. [Google Scholar] [CrossRef] [PubMed]
- Snyder, G.J.; Ursell, T.S. Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 2003, 91, 148301. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Shao, L.; Zhang, K.; Pipe, K.P. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 2013, 12, 719–723. [Google Scholar] [CrossRef]
- Snyder, G.J.; Christensen, M.; Nishibori, E.; Caillat, T.; Iversen, B.B. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat. Mater. 2004, 3, 458–463. [Google Scholar] [CrossRef]
- Takahata, K.; Iguchi, Y.; Tanaka, D.; Itoh, T.; Terasaki, I. Low thermal conductivity of the layered oxide (Na, Ca)Co2O4: Another example of a phonon glass and an electron crystal. Phys. Rev. B 2000, 61, 12551. [Google Scholar] [CrossRef]
- Wang, Z.L.; Yokoyama, Y.; Onda, T.; Adachi, Y.; Chen, Z.C. Improved Thermoelectric Properties of Hot-Extruded Bi–Te–Se Bulk Materials with Cu Doping and Property Predictions via Machine Learning. Adv. Electron. Mater. 2019, 5, 1900079. [Google Scholar] [CrossRef]
- Kumari, M.; Sharma, Y.C. A Review on Recent Enhancement in Thermoelectric Properties in Telluride Compounds. J. Mater. Sci. 2019, 7, 12. [Google Scholar] [CrossRef]
- Chen, Z.; Jian, Z.; Li, W.; Chang, Y.; Ge, B.; Hanus, R.; Yang, J.; Chen, Y.; Huang, M.; Snyder, G.J.; et al. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv. Mater. 2017, 29, 1606768. [Google Scholar] [CrossRef]
- Pei, Y.; Lensch-Falk, J.; Toberer, E.S.; Medlin, D.L.; Snyder, G.J. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv. Funct. Mater. 2011, 21, 241–249. [Google Scholar] [CrossRef]
- Minnich, A.J.; Lee, H.; Wang, X.W.; Joshi, G.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G.; Vashaee, D. Modeling study of thermoelectric SiGe nanocomposites. Phys. Rev. B 2009, 80, 155327. [Google Scholar] [CrossRef]
- Bathula, S.; Jayasimhadri, M.; Singh, N.; Srivastava, A.K.; Pulikkotil, J.; Dhar, A.; Budhani, R.C. Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys. Appl. Phys. Lett. 2012, 101, 213902. [Google Scholar] [CrossRef]
- Goldsmid, H.J.; Douglas, R.W. The use of semiconductors in thermoelectric refrigeration. Brit. J. Appl. Phys. 1954, 5, 386. [Google Scholar] [CrossRef]
- Astrain, D.; Vian, J.G.; Domınguez, M. Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation. Appl. Therm. Eng. 2003, 23, 2183–2200. [Google Scholar] [CrossRef]
- Rosi, F.D. Thermoelectricity and thermoelectric power generation. Solid-State Electron. 1968, 11, 833–868. [Google Scholar] [CrossRef]
- Liu, W.; Jie, Q.; Kim, H.S.; Ren, Z. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Mater. 2015, 87, 357–376. [Google Scholar] [CrossRef]
- Min, G.; Rowe, D.M. Cooling performance of integrated thermoelectric microcooler. Solid-State Electron. 1999, 43, 923–929. [Google Scholar] [CrossRef]
- Wang, W.; Jia, F.; Huang, Q.; Zhang, J. A new type of low power thermoelectric micro-generator fabricated by nanowire array thermoelectric material. Microelectron. Eng. 2005, 77, 223–229. [Google Scholar] [CrossRef]
- Beaumale, M.; Barbier, T.; Bréard, Y.; Guelou, G.; Powell, A.V.; Vaqueiro, P.; Guilmeau, E. Electron doping and phonon scattering in Ti1 + xS2 thermoelectric compounds. Acta Mater. 2014, 78, 86–92. [Google Scholar] [CrossRef]
- Zevalkink, A.; Zeier, W.G.; Pomrehn, G.; Schechtel, E.; Tremel, W.; Snyder, G.J. Thermoelectric properties of Sr3 GaSb3–a chain-forming Zintl compound. Energ. Environ. Sci. 2012, 5, 9121–9128. [Google Scholar] [CrossRef]
- Yazawa, K.; Shakouri, A. Cost-efficiency trade-off and the design of thermoelectric power generators. Environ. Sci. Technol. 2011, 45, 7548–7553. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Zhu, H.; Ding, Z.; Liu, Z.; Gamage, G.A.; Chen, G.; Ren, Z. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 2019, 365, 495–498. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Mamakhel, A.; Jørgensen MR, V.; Iversen, B.B. High-performance low-cost n-type Se-doped Mg3Sb2-based Zintl compounds for thermoelectric application. Chem. Mater. 2017, 29, 5371–5383. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Pedersen, S.H.; Yin, H.; Hung, L.T.; Iversen, B.B. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 2017, 8, 13901. [Google Scholar] [CrossRef]
- Li, A.; Fu, C.; Zhao, X.; Zhu, T. High-performance Mg3Sb2-xBix thermoelectrics: Progress and perspective. Research 2020, 2020, 1934848. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.J.; Zhang, Z.W.; Chen, C.; Wei, L.H.; He, H.L.; Mao, J.; Zhang, Q. Entropy engineering in CaZn2Sb2–YbMg2Sb2 Zintl alloys for enhanced thermoelectric performance. Rare Met. 2022, 41, 2998–3004. [Google Scholar] [CrossRef]
- Ullah, M.; Murtaza, G.; Ramay, S.M.; Mahmood, A. Structural, electronic, optical and thermoelectric properties of Mg3X2 (X = N, P, As, Sb, Bi) compounds. Mater. Res. Bull. 2017, 91, 22–30. [Google Scholar] [CrossRef]
- Sedighi, M.; Nia, B.A.; Zarringhalam, H.; Moradian, R. Density functional theory study of the structural and electronic properties of Mg3Bi2 in hexagonal and cubic phases. Eur. Phys. J. Appl. Phys. 2013, 61, 10103. [Google Scholar] [CrossRef]
- Wood, M.; Kuo, J.J.; Imasato, K.; Snyder, G.J. Improvement of Low-Temperature zT in a Mg3Sb2–Mg3Bi2 Solid Solution via Mg-Vapor Annealing. Adv. Mater. 2019, 31, 1902337. [Google Scholar] [CrossRef]
- Kim, I.K. Fabrication of Mg3Sb2 and Mg3Bi2 Compounds and their composites by mechanical alloying. J. Korean Crys. Growth Crys. Technol. 2013, 23, 189–194. [Google Scholar] [CrossRef]
- Ajaal, T.; Smith, R.W.; Yen, W.T. The development and characterization of a ball mill for mechanical alloying. Can. Metal. Quart. 2002, 41, 7–14. [Google Scholar] [CrossRef]
- Yadav, G.G.; Susoreny, J.A.; Zhang, G.; Yang, H.; Wu, Y. Nanostructure-based thermoelectric conversion: An insight into the feasibility and sustainability for large-scale deployment. Nanoscale 2011, 3, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Rong, Z.; Yang, F.; Gan, Z.; Li, G. Improved thermoelectric properties of Bi2Te3 − xSex alloys by melt spinning and resistance pressing sintering. J. Phys. D Appl. Phys. 2014, 47, 115101. [Google Scholar] [CrossRef]
- Cai, X.; Rong, Z.; Yang, F.; Li, G.; Gan, Z. Resistance pressing sintering: A simple, economical and practical technique and its application to p-type (Bi, Sb)2Te3 thermoelectric materials. J. Alloys Compd. 2014, 607, 91–98. [Google Scholar]
- Liu, Y.; Ding, J.; Xu, B.; Lan, J.; Zheng, Y.; Zhan, B.; Zhang, B.; Lin, Y.; Nan, C. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl. Phys. Lett. 2015, 106, 233903. [Google Scholar] [CrossRef]
- Zou, P.; Xu, G.; Wang, S.; Chen, P.; Huang, F. Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi2Te2.7Se0.3 doped with Gd. Prog. Nat. Sci. Mater. Int. 2014, 24, 210–217. [Google Scholar] [CrossRef]
- Altermatt, P.P.; Schenk, A.; Geelhaar, F.; Heiser, G. Reassessment of the intrinsic carrier density in crystalline silicon in view of band-gap narrowing. J. Appl. Phys. 2003, 93, 1598–1604. [Google Scholar] [CrossRef]
- Lu, J.G.; Fujita, S.; Kawaharamura, T.; Nishinaka, H.; Kamada, Y.; Ohshima, T.; Ye, Z.Z.; Zeng, Y.J.; Zhang, Y.Z.; Zhu, L.P.; et al. Carrier concentration dependence of band gap shift in n-type ZnO: Al films. J. Appl. Phys. 2007, 101, 083705. [Google Scholar] [CrossRef]
- Jeong, M.; Tak, J.Y.; Lee, S.; Seo, W.S.; Cho, H.K.; Lim, Y.S. Effects of Cu incorporation as an acceptor on the thermoelectric transport properties of CuxBi2Te2.7Se0.3compounds. J. Alloys Compd. 2017, 696, 213–219. [Google Scholar] [CrossRef]
- Song, S.W.; Mao, J.; Bordelon, M.; He, R.; Wang, Y.M.; Shuai, J.; Sun, J.; Lei, X.; Ren, Z.; Chen, S.; et al. Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg3+δY0.02Sb1.5Bi0.5. Mater. Today Phys. 2019, 8, 25–33. [Google Scholar] [CrossRef]
- Yuen, J.D.; Fan, J.; Seifter, J.; Lim, B.; Hufschmid, R.; Heeger, A.J.; Wudl, F. High performance weak donor–acceptor polymers in thin film transistors: Effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J. Am. Chem. Soc. 2011, 133, 20799–20807. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, C.; Liang, A.; Zhou, X.; Zhou, W.; Wan, T.; Wang, L. The effect of the backbone structure on the thermoelectric properties of donor–acceptor conjugated polymers. Polym. Chem. 2017, 8, 4644–4650. [Google Scholar] [CrossRef]
- Tamaki, H.; Sato, H.K.; Kanno, T. Isotropic Conduction Network and Defect Chemistry in Mg3+ δSb2-Based Layered Zintl Compounds with High Thermoelectric Performance. Adv. Mater. 2016, 28, 10182–10187. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; He, J.; Zhu, T.; Fu, C.; Liu, X.; Hu, L.; Zhao, X. High performance Mg2 (Si, Sn) solid solutions: A point defect chemistry approach to enhancing thermoelectric properties. Adv. Funct. Mater. 2014, 24, 3776–3781. [Google Scholar] [CrossRef]
- Chen, L.D.; Kawahara, T.; Tang, X.F.; Goto, T.; Hirai, T.; Dyck, J.S.; Chen, W.; Uher, C. Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12. J. Appl. Phys. 2001, 90, 1864–1868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, Z.; Zhao, H.; Luo, X.; Han, W.; Wang, H.; Meng, L.; She, X.; Quan, A.; Peng, Y.; et al. Effect of Composition Adjustment on the Thermoelectric Properties of Mg3Bi2-Based Thermoelectric Materials. Micromachines 2023, 14, 1844. https://doi.org/10.3390/mi14101844
Yang J, Wang Z, Zhao H, Luo X, Han W, Wang H, Meng L, She X, Quan A, Peng Y, et al. Effect of Composition Adjustment on the Thermoelectric Properties of Mg3Bi2-Based Thermoelectric Materials. Micromachines. 2023; 14(10):1844. https://doi.org/10.3390/mi14101844
Chicago/Turabian StyleYang, Jianbao, Zhibin Wang, Hong Zhao, Xinyu Luo, Wenyuan Han, Hao Wang, Linghao Meng, Xinqi She, Anlong Quan, Yixin Peng, and et al. 2023. "Effect of Composition Adjustment on the Thermoelectric Properties of Mg3Bi2-Based Thermoelectric Materials" Micromachines 14, no. 10: 1844. https://doi.org/10.3390/mi14101844
APA StyleYang, J., Wang, Z., Zhao, H., Luo, X., Han, W., Wang, H., Meng, L., She, X., Quan, A., Peng, Y., Cai, G., Liu, Y., Tang, Y., & Feng, B. (2023). Effect of Composition Adjustment on the Thermoelectric Properties of Mg3Bi2-Based Thermoelectric Materials. Micromachines, 14(10), 1844. https://doi.org/10.3390/mi14101844