Theoretical Analysis of Airy–Gauss Bullets Obtained by Means of High Aperture Binary Micro Zonal Plate
Abstract
:1. Introduction
2. Theoretical Description
- The microplate is illuminated by an incident circular electrical field given by a polarized spatial Gaussian wave with (m).
- The spectral bandwidth of the incident pulse, , is discretized
- Finally, the Airy–Gauss bullets at each z plane are obtained by the discrete inverse Fourier transform by using the spatial distributions of the non-diffracting beam at each frequency ( and ):
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Christodoulides, D.; Wengerowsky, S.; Rao, S.M. Optical airy beams and bullets. Front. Mod. Opt. 2016, 190, 103–121. [Google Scholar] [CrossRef]
- Polynkin, P.; Kolesik, M.; Moloney, J.V.; Siviloglou, G.A.; Christodoulides, D.N. Curved Plasma Channel Generation Using Ultraintense Airy Beams. Science 2009, 324, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Minovich, A.E.; Klein, A.E.; Neshev, D.N.; Pertsch, T.; Kivshar, Y.S.; Christodoulides, D.N. Airy plasmons: Non-diffracting optical surface waves. Laser Photonics Rev. 2014, 8, 221–232. [Google Scholar] [CrossRef]
- Liang, Y.; Hu, Y.; Song, D.; Lou, C.; Zhang, X.; Chen, Z.; Xu, J. Image signal transmission with Airy beams. Opt. Lett. 2015, 40, 5686–5689. [Google Scholar] [CrossRef] [PubMed]
- Baumgartl, J.; Mazilu, M.; Dholakia, K. Optically mediated particle clearing using Airy wavepackets. Nat. Photonics 2008, 2, 675–678. [Google Scholar] [CrossRef]
- Abdollahpour, D.; Suntsov, S.; Papazoglou, D.G.; Tzortzakis, S. Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes. Phys. Rev. Lett. 2010, 105, 253901. [Google Scholar] [CrossRef]
- Christodoulides, D.N. Optical Trapping Riding along an Airy beam. Nat. Photonics 2008, 2, 652–653. [Google Scholar] [CrossRef]
- Suarez, R.A.B.; Neves, A.A.R.; Gesualdi, M.R.R. Optical trapping with non-diffracting Airy beams array using a holographic optical tweezers. Opt. Laser Technol. 2021, 135, 106678. [Google Scholar] [CrossRef]
- Nylk, J.; McCluskey, K.; Aggarwal, S.; Tello, J.A.; Dholakia, K. Enhancement of image quality and imaging depth with Airy light-sheet microscopy in cleared and non-cleared neural tissue. Biomed. Opt. Express 2016, 7, 4021–4033. [Google Scholar] [CrossRef] [Green Version]
- Dholakia, K. New Perspectives for Biomedical Imaging at Depth. Biophotonics Australas. 2019, 11202, 1120203. [Google Scholar] [CrossRef]
- Ren, Y.X.; He, H.; Tang, H.; Wong, K.K.Y. Non-Diffracting Light Wave: Fundamentals and Biomedical Applications. Front. Phys.-Lausanne 2021, 9, 698343. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Christodoulides, D.N. Accelerating finite energy Airy beams. Opt. Lett. 2007, 32, 979–981. [Google Scholar] [CrossRef]
- Siviloglou, G.A.; Broky, J.; Dogariu, A.; Christodoulides, D.N. Observation of accelerating airy beams. Phys. Rev. Lett. 2007, 99, 213901. [Google Scholar] [CrossRef]
- Dai, H.T.; Sun, X.W.; Luo, D.; Liu, Y.J. Airy beams generated by a binary phase element made of polymer-dispersed liquid crystals. Opt. Express 2009, 17, 19365–19370. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Dai, H.T.; Sun, X.W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal. Opt. Express 2013, 21, 31318–31323. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Yang, Y.; Wang, J.; Bu, J.; Wang, M.; Yuan, X.C. Microfabricated continuous cubic phase plate induced Airy beams for optical manipulation with high power efficiency. Appl. Phys. Lett. 2011, 99, 261106. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Y.; Zhang, C.; Xu, J.; Ji, S.; Ni, J.; Li, J.; Hu, Y.; Wu, D.; Chu, J. Continuous cubic phase microplates for generating high-quality Airy beams with strong deflection. Opt. Lett. 2017, 42, 2483–2486. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wang, L.; Wen, S. Role of third-order dispersion in chirped Airy pulse propagation in single-mode fibers. Opt. Commun. 2018, 413, 24–29. [Google Scholar] [CrossRef]
- Nanfang, Y.; Patrice, G.; Kats Mikhail, A.; Francesco, A.; Jean-Philippe, T.; Federico, C.; Zeno, G. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.L.; Chen, K.; Wang, G.M.; Luo, X.Y.; Cai, T.; Zhang, C.B.; Feng, Y. Airy Beam Generation: Approaching Ideal Efficiency and Ultra Wideband with Reflective and Transmissive Metasurfaces. Adv. Opt. Mater. 2020, 8, 2000860. [Google Scholar] [CrossRef]
- Song, E.Y.; Lee, G.Y.; Park, H.; Lee, K.; Kim, J.; Hong, J.; Kim, H.; Lee, B. Compact Generation of Airy Beams with C-Aperture Metasurface. Adv. Opt. Mater. 2017, 5, 1601028. [Google Scholar] [CrossRef]
- Wen, J.; Chen, L.; Yu, B.; Nieder, J.B.; Zhuang, S.; Zhang, D.; Lei, D. All-Dielectric Synthetic-Phase Metasurfaces Generating Practical Airy Beams. ACS Nano 2021, 15, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Ding, X.; Zhang, K.; Fu, J.; Burokur, S.N.; Wu, Q. Generation and deflection control of a 2D Airy beam utilizing metasurfaces. Opt. Lett. 2021, 46, 5220–5223. [Google Scholar] [CrossRef] [PubMed]
- Chremmos, I.; Efremidis, N.K.; Christodoulides, D.N. Pre-engineered abruptly autofocusing beams. Opt. Lett. 2011, 36, 1890–1892. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, D.G.; Efremidis, N.K.; Christodoulides, D.N.; Tzortzakis, S. Observation of abruptly autofocusing waves. Opt. Lett. 2011, 36, 1842–1844. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Jiang, Y.; Huang, K.; Lu, X. Abruptly autofocusing property of blocked circular Airy beams. Opt. Express 2014, 22, 22847–22853. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, X.; Yu, W.; Shao, H.; Zheng, W.; Lu, X. Propagation characteristics of the modified circular Airy beam. Opt. Express 2015, 23, 29834–29841. [Google Scholar] [CrossRef]
- Liu, Z.; He, Y.; Sun, Q.; Ning, Y.; Xu, X. Comparison of focusability between traditional beams and novel beams. Optik 2021, 230, 166263. [Google Scholar] [CrossRef]
- Jiang, Y.; Cao, Z.; Shao, H.; Zheng, W.; Zeng, B.; Lu, X. Trapping two types of particles by modified circular Airy beams. Opt. Express 2016, 24, 18072–18081. [Google Scholar] [CrossRef]
- Porfirev, A.P. Laser manipulation of airborne microparticles behind non-transparent obstacles with the help of circular Airy beams. Appl. Opt. 2021, 60, 670–675. [Google Scholar] [CrossRef]
- Lu, F.; Tan, L.; Tan, Z.; Wu, H.; Liang, Y. Dynamical power flow and trapping-force properties of two-dimensional Airy-beam superpositions. Phys. Rev. A 2021, 104, 023526. [Google Scholar] [CrossRef]
- Mitri, F.G. Circularly-polarized Airy light-sheet spinner tweezers and particle transport. J. Quant. Spectrosc. Radiat. 2021, 260, 107466. [Google Scholar] [CrossRef]
- Khonina, S.N.; Porfirev, A.P.; Ustinov, A.V. Sudden autofocusing of superlinear chirp beams. J. Opt. 2018, 20, 025605. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Fomchenkov, S.A.; Khonina, S.N. Experimental investigation of complex circular Airy beam characteristics. In Proceedings of the Saratov Fall Meeting 2017: Laser Physics and Photonics Xviii; and Computational Biophysics and Analysis of Biomedical Data Iv, Saratov, Russia, 26 April 2018; Volume 10717, p. 107170Q. [Google Scholar] [CrossRef]
- Berry, M.V.; Balazs, N.L. Non-spreading Wave Packets. Am. J. Phys. 1979, 47, 264–267. [Google Scholar] [CrossRef]
- Bongiovanni, D.; Wetzel, B.; Hu, Y.; Chen, Z.; Morandotti, R. Optimal compression and energy confinement of optical Airy bullets. Opt. Express 2016, 24, 26454–26463. [Google Scholar] [CrossRef] [PubMed]
- Chong, A.; Renninger, W.H.; Wise, F.W. Linear light bullets based on Airy-Bessel wave packets. In Proceedings of the Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications X, San Francisco, CA, USA, 21 February 2011; Volume 7917, p. 79170R. [Google Scholar] [CrossRef]
- Li, H.; Huang, X.; Cao, Q.; Zhao, Y.; Li, P.; Wan, C.; Chong, A. Generation of three-dimensional versatile vortex linear light bullets. Chin. Opt. Lett. 2017, 15, 030009. [Google Scholar] [CrossRef] [Green Version]
- Chong, A.; Renninger, W.H.; Christodoulides, D.N.; Wise, F.W. Airy-Bessel wave packets as versatile linear light bullets. Nat. Photonics 2010, 4, 103–106. [Google Scholar] [CrossRef]
- Zhong, W.P.; Belic, M.R.; Huang, T. Three-dimensional finite-energy Airy self-accelerating parabolic-cylinder light bullets. Phys. Rev. A 2013, 88, 033824. [Google Scholar] [CrossRef]
- Deng, F.; Hong, W. Chirp-Induced Channel of an Airy Pulse in an Optical Fiber Close to Its Zero-Dispersion Point. IEEE Photonics J. 2016, 8, 7102807. [Google Scholar] [CrossRef]
- Zhong, W.P.; Belic, M.R.; Zhang, Y. Airy-Tricomi-Gaussian compressed light bullets. Eur. Phys. J. Plus. 2016, 131, 42. [Google Scholar] [CrossRef]
- Blaya, S.; Carretero, L.; Acebal, P. Vectorial analysis of Airy-Airy bullets generated by high aperture binary micro zonal plate. Opt. Laser. Eng. 2020, 124, 105802. [Google Scholar] [CrossRef]
- Wu, D.; Qi, X.; Cai, Z.; Wang, D.; Hu, Y.; Li, J.; Chu, J. Direct Generation of Airy Beams at Designed Fourier Planes Using Integrated Airy Phase Plates. IEEE Photonic Technol. Lett. 2021, 33, 595–598. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Y.; Zhang, J.; Xia, J.; Pu, X.; Dong, Y.; Li, S.; Fu, X.; Zhang, A.; Wang, C.; et al. Research on propagation properties of controllable hollow flat-topped beams in turbulent atmosphere based on ABCD matrix. Opt. Commun. 2015, 334, 133–140. [Google Scholar] [CrossRef]
- Luneburg, R.K. Mathematical Theory of Optics; University California Press: Berkeley, CA, USA, 1964. [Google Scholar]
- Shen, F.; Wang, A. Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula. Appl. Opt. 2006, 45, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, D.M.; Davis, J.A.; Berg, C.A.; Freeman, C.L. Analysis of the propagation dynamics and Gouy phase of Airy beams using the fast Fresnel transform algorithm. Appl. Opt. 2014, 53, 2112–2116. [Google Scholar] [CrossRef]
- Ye, H.; Qiu, C.W.; Huang, K.; Teng, J.; Luk’yanchuk, B.; Yeo, S.P. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: Vectorial Rayleigh–Sommerfeld method. Laser Phys. Lett. 2013, 10, 065004. [Google Scholar] [CrossRef] [Green Version]
- Khonina, S.N.; Ustinov, A.V.; Kovalyov, A.A.; Volotovsky, S.G. Near-field propagation of vortex beams: Models and computation algorithms. Opt. Mem. Neural Netw. 2014, 23, 50–73. [Google Scholar] [CrossRef]
- Acebal, P.; Carretero, L.; Blaya, S. Extraordinary spin to orbital angular momentum conversion on guided zone plates. Sci. Rep. 2021, 11, 8073. [Google Scholar] [CrossRef]
- Wei, B.Y.; Liu, S.; Chen, P.; Qi, S.X.; Zhang, Y.; Hu, W.; Lu, Y.Q.; Zhao, J.L. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl. Phys. Lett. 2018, 112, 121101. [Google Scholar] [CrossRef]
- Polynkin, P.; Kolesik, M.; Moloney, J. Filamentation of Femtosecond Laser Airy Beams in Water. Phys. Rev. Lett. 2009, 103, 123902. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values |
---|---|
532 nm | |
(m) | |
f | 15 () |
n | 1.33 |
Dimensions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaya, S.; Lopez-Sola, E.; Acebal, P.; Carretero, L. Theoretical Analysis of Airy–Gauss Bullets Obtained by Means of High Aperture Binary Micro Zonal Plate. Micromachines 2022, 13, 279. https://doi.org/10.3390/mi13020279
Blaya S, Lopez-Sola E, Acebal P, Carretero L. Theoretical Analysis of Airy–Gauss Bullets Obtained by Means of High Aperture Binary Micro Zonal Plate. Micromachines. 2022; 13(2):279. https://doi.org/10.3390/mi13020279
Chicago/Turabian StyleBlaya, Salvador, Edmundo Lopez-Sola, Pablo Acebal, and Luis Carretero. 2022. "Theoretical Analysis of Airy–Gauss Bullets Obtained by Means of High Aperture Binary Micro Zonal Plate" Micromachines 13, no. 2: 279. https://doi.org/10.3390/mi13020279
APA StyleBlaya, S., Lopez-Sola, E., Acebal, P., & Carretero, L. (2022). Theoretical Analysis of Airy–Gauss Bullets Obtained by Means of High Aperture Binary Micro Zonal Plate. Micromachines, 13(2), 279. https://doi.org/10.3390/mi13020279