The Grain Growth Control of ZnO-V2O5 Based Varistors by PrMnO3 Addition
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Sample Characterisation
2.3. Sample I–V Characteristics
3. Results and Discussion
3.1. Phase Compositions and Distributions in Sintered Samples
3.2. Average ZnO Grain Sizes in Sintered Samples
3.3. Kinetic Grain Growth Parameters
3.4. Grain Size Distribution in Sintered Samples
3.5. Electrical Behaviour of Sintered Samples
4. Conclusions
- (1)
- The addition of PrMnO3 uniformised and refined the ZnO grains in the resulting ceramics. At a 0.75 mol% PrMnO3 addition, the bimodal grain size distribution was completely eliminated, and the average ZnO grain size was reduced by more than 45%, compared with the sample without PrMnO3 addition.
- (2)
- The addition of PrMnO3 resulted in remarkably improved stability of the switching field strength, narrowing its range of variation from 1580 V/cm (without PrMnO3 addition) to only 91 V/cm (with 0.75 mol% PrMnO3 addition). The homogenisation and reduction in the ZnO grain sizes were responsible for the observed stabilisation of the switching field strength.
- (3)
- A phenomenological analysis of the ZnO grain growth kinetics showed that the kinetic grain growth exponent n increased from 2.9 without PrMnO3 to 6.1 after a 0.75 mol% PrMnO3 addition, corresponding to an increase in apparent activation energy from 202 ± 29 to 697 ± 66 kJ/mol, respectively.
- (4)
- The formation of a PrVO4 secondary phase as the result of PrMnO3 addition was responsible for the grain growth behaviour observed. The PrVO4 phase was found to be mostly located at the ZnO grain boundaries, thus hindering and eventually eliminating the abnormal growth of ZnO grains.
Author Contributions
Funding
Conflicts of Interest
References
- Qinghuang, Z.; Yun, G.; Jiwei, X.; Ting, W.; Linjun, W. Effect of Deposition Temperature on Structural and Optical Properties of Zno Films Based on Tourmaline Substrates. Rare Met. Mater. Eng. 2017, 46, 3228–3232. [Google Scholar] [CrossRef]
- Hongtao, S.; Qin, Z.; Zhang, L.; Yao, X. Inhomogeneity of grain boundaries of ZnO varistor. J. Mater. Sci. Technol. 1994, 10, 273. [Google Scholar]
- Nan, C.W.; Clarke, D.R. Effect of variations in grain size and grain boundary barrier heights on the current-voltage characteristics of ZnO varistors. J. Am. Ceram. Soc. 1996, 79, 3185–3192. [Google Scholar] [CrossRef]
- Tsai, J.K.; Wu, T.B. Non-ohmic characteristics of ZnO-V2O5 ceramics. J. Appl. Phys. 1994, 76, 4817–4822. [Google Scholar] [CrossRef]
- Tsai, J.; Wu, T. Microstructure and nonohmic properties of binary ZnO-V2O5 ceramics sintered at 900 °C. Mater. Lett. 1996, 26, 199–203. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, J.Z.; Tu, M.J. Influence of Nd2O3 on voltage and microstructure of ZnO varistor materials. Rare Met. Mater. Eng. 2005, 34, 154–157. [Google Scholar]
- Shaohua, L.; Zilong, T.; Hongyun, L. The Effect of CeO2 on the Electric Properties of TiO2 Based Capacitor-Varistor Multi-Function Ceramics. Rare Met. Mater. Eng. 2004, 33, 748–751. [Google Scholar]
- Hng, H.H.; Chan, P.L. Effects of MnO2 doping in V2O5-doped ZnO varistor system. Mater. Chem. Phys. 2002, 75, 61–66. [Google Scholar] [CrossRef]
- Pfeiffer, H.; Knowles, K.M. Effects of vanadium and manganese concentrations on the composition, structure and electrical properties of ZnO-rich MnO2–V2O5–ZnO varistors. J. Eur. Ceram. Soc. 2004, 24, 1199–1203. [Google Scholar] [CrossRef]
- Nahm, C. Microstructure and electrical properties of ZnO–V2O5–MnO2–Co3O4–Dy2O3–Nb2O5-based varistors. J. Alloy. Compd. 2010, 490, L52–L54. [Google Scholar] [CrossRef]
- Senda, T.; Bradt, R.C. Grain growth in sintered ZnO and ZnO-Bi2O3 ceramics. J. Am. Ceram. Soc. 1990, 73, 106–114. [Google Scholar] [CrossRef]
- Hng, H.H.; Knowles, K.M. Microstructure and current–voltage characteristics of multicomponent vanadium-doped zinc oxide varistors. J. Am. Ceram. Soc. 2000, 83, 2455–2462. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, L.; Zhang, Y.; Wang, X.; Xie, M. Surface Modification of Li1.6(Fe0.2Ni0.2Mn0.6)O2.6 by V2O5-Coating. Rare Met. Mater. Eng. 2014, 43, 530–534. [Google Scholar] [CrossRef]
- Cao, P.; Bai, Y.; Qu, Z.; Zhao, D.; Shen, D.; Fan, X. Structural and optical properties of Mn-doped ZnO nanocolumns grown by cathodic electrodeposition. Chin. J. Lumin. 2010, 20, 326–328. [Google Scholar]
- Hng, H.H.; Halim, L. Grain growth in sintered ZnO–1 mol% V2O5 ceramics. Mater. Lett. 2003, 57, 1411–1416. [Google Scholar] [CrossRef]
- Hng, H.H.; Chan, P.L. Cr2O3 doping in ZnO–0.5 mol% V2O5 varistor ceramics. Ceram. Int. 2009, 35, 409–413. [Google Scholar] [CrossRef]
- Ming, Z.; Yu, S.; Sheng, T.C. Grain growth of ZnO–V2O5 based varistor ceramics with different antimony dopants. J. Eur. Ceram. Soc. 2011, 31, 2331–2337. [Google Scholar] [CrossRef]
- Lao, Y.; Kuo, S.; Tuan, W. Effect of powder bed on the microstructure and electrical properties of Bi2O3-and Sb2O3-doped ZnO. J. Mater. Sci. Mater. Electron. 2009, 20, 234–241. [Google Scholar] [CrossRef]
- Gerlt, A.R.; Criner, A.K.; Semiatin, L.; Payton, E.J. On the grain size proportionality constants calculated in MI Mendelson’s “Average grain size in polycrystalline ceramics”. J. Am. Ceram. Soc. 2019, 102, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Daneu, N.; Rečnik, A.; Bernik, S. Grain-growth phenomena in ZnO ceramics in the presence of inversion boundaries. J. Am. Ceram. Soc. 2011, 94, 1619–1626. [Google Scholar] [CrossRef]
- Han, J.; Mantas, P.Q.; Senos, A. Grain growth in Mn-doped ZnO. J. Eur. Ceram. Soc. 2000, 20, 2753–2758. [Google Scholar] [CrossRef]
- Yang, S.C.; German, R.M. Grain Growth Kinetics in Liquid-Phase-Sintered Zinc Oxide–Barium Oxide Ceramics. J. Am. Ceram. Soc. 1991, 74, 3085–3090. [Google Scholar] [CrossRef]
- Han, J. Microstructure and non-linearity characterization of ZnVTiO based varistor ceramics doped with PrMnO3 typed precursor. J. Synth. Cryst. 2014, 43, 2258–2264. [Google Scholar]
- Daneu, N.; Rečnik, A.; Bernik, S. Grain growth control in Sb2O3-doped zinc oxide. J. Am. Ceram. Soc. 2003, 86, 1379–1384. [Google Scholar] [CrossRef]
- Pianaro, S.A.; Pereira, E.C.; Bulhoes, L.; Longo, E.; Varela, J.A. Effect of Cr2O3 on the electrical properties of multicomponent ZnO varistors at the pre-breakdown region. J. Mater. Sci. 1995, 30, 133–141. [Google Scholar] [CrossRef]
- Hng, H.H.; Tse, K.Y. Grain growth of ZnO in binary ZnO–V2O5 ceramics. J. Mater. Sci. 2003, 38, 2367–2372. [Google Scholar] [CrossRef]
Sample Name | Nominal Powder Compositions |
---|---|
ZVC | ZnO + V2O5 (1 mol%) + Cr2O3 (0.35 mol%) |
ZVCP25 | ZnO + V2O5 (1 mol%) + Cr2O3 (0.35 mol%) + PrMnO3 (0.25 mol%) |
ZVCP50 | ZnO + V2O5 (1 mol%) + Cr2O3 (0.35 mol%) + PrMnO3 (0.50 mol%) |
ZVCP75 | ZnO + V2O5 (1 mol%) + Cr2O3 (0.35 mol%) + PrMnO3 (0.75 mol%) |
Sample | Average Grain Size G (μm) | ||||||
---|---|---|---|---|---|---|---|
850 °C 4 h | 900 °C 4 h | 925 °C 4 h | 875 °C 2 h | 875 °C 4 h | 875 °C 6 h | 875 °C 8 h | |
ZVC | 6.55 | 9.42 | 10.55 | 4.15 | 7.19 | 8.04 | 8.68 |
ZVCP25 | 4.95 | 7.14 | 9.65 | 3.18 | 5.94 | 6.62 | 6.80 |
ZVCP50 | 4.05 | 6.81 | 7.69 | 2.93 | 5.81 | 6.00 | 6.32 |
ZVCP75 | 3.02 | 5.04 | 6.76 | 2.47 | 5.80 | 4.95 | 5.14 |
Ref | Material System (Nominal Composition, mol%) | Sintering Temperature T (°C) | Growth Exponent n | Apparent Activation Energy Q (kJ/mol) |
---|---|---|---|---|
[22] | Pure ZnO | 900–1400 | 3.0 | 224 ± 16 |
[26] | ZnO-V2O5 (0.5–2.0) | 900–1200 | 1.5–1.8 | ~88 |
[2] | ZnO-V2O5 (0.5–2.0) | 900 | 1.2–1.6 | – |
[15] | ZnO-V2O5 (1.0) | 750–1200 | 1.4 | 76 ± 7 |
[14] | ZnO-V2O5 (0.5) − Sb2O3 (0.5) | 900–1050 | 4.0 | 365 |
This study | ZnO + V2O5 (1.0) + Cr2O3 (0.35) | 875 | 2.9 | 202 ± 29 |
ZnO + V2O5 (1.0) + Cr2O3 (0.35) + PrMnO3 (0.25) | 875 | 3.2 | 311 ± 32 | |
ZnO + V2O5 (1.0) + Cr2O3 (0.35) + PrMnO3 (0.50) | 875 | 3.6 | 342 ± 47 | |
ZnO + V2O5 (1.0) + Cr2O3 (0.35) + PrMnO3 (0.75) | 875 | 6.1 | 697 ± 66 |
Sample | Relative Density (%) | (%) | Average Grain Size (µm) | Nonlinear Coefficient α | ||
---|---|---|---|---|---|---|
Range | Average | |||||
ZVC | 95.1 | 8.83 | 7.19 | 7.2 | 2924–4512 | 3649 |
ZVCP25 | 94.8 | 6.53 | 5.94 | 7.7 | 3523–3846 | 3632 |
ZVCP50 | 95.1 | 5.66 | 5.81 | 7.8 | 3629–3807 | 3726 |
ZVCP75 | 95.7 | 0 | 5.80 | 8.9 | 4594–4686 | 4620 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Cai, C.; Shi, Y.; Xie, M.; Wu, Y.; Liu, Y.; Peng, J.; Bao, J.; An, S. The Grain Growth Control of ZnO-V2O5 Based Varistors by PrMnO3 Addition. Micromachines 2022, 13, 214. https://doi.org/10.3390/mi13020214
Xu M, Cai C, Shi Y, Xie M, Wu Y, Liu Y, Peng J, Bao J, An S. The Grain Growth Control of ZnO-V2O5 Based Varistors by PrMnO3 Addition. Micromachines. 2022; 13(2):214. https://doi.org/10.3390/mi13020214
Chicago/Turabian StyleXu, Maofeng, Changkun Cai, Yu Shi, Manyi Xie, Yanlong Wu, Yuanyuan Liu, Jun Peng, Jinxiao Bao, and Shengli An. 2022. "The Grain Growth Control of ZnO-V2O5 Based Varistors by PrMnO3 Addition" Micromachines 13, no. 2: 214. https://doi.org/10.3390/mi13020214
APA StyleXu, M., Cai, C., Shi, Y., Xie, M., Wu, Y., Liu, Y., Peng, J., Bao, J., & An, S. (2022). The Grain Growth Control of ZnO-V2O5 Based Varistors by PrMnO3 Addition. Micromachines, 13(2), 214. https://doi.org/10.3390/mi13020214