Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Lam, K.H.; Zheng, H.; Qiu, W.; Shung, K.K. Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 2014, 66, 87–111. [Google Scholar] [CrossRef]
- Chen, D.; Wang, L.; Luo, X.; Fei, C.; Li, D.; Shan, G.; Yang, Y. Recent development and perspectives of optimization design methods for piezoelectric ultrasonic transducers. Micromachines 2021, 12, 779. [Google Scholar] [CrossRef]
- Sherrit, S.; Wiederick, H.D.; Mukherjee, B.K.; Sayer, M. An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode. J. Phys. D Appl. Phys. 1997, 30, 2354–2363. [Google Scholar] [CrossRef]
- Han, J.S.; Gal, C.W.; Park, J.M.; Park, S.J. Powder injection molding of PNN-PMN-PZN doped low temperature sintering PZT ceramics. J. Manuf. Process. 2017, 28, 235–242. [Google Scholar] [CrossRef]
- Yang, Z.; Chao, X.; Zhang, R.; Chang, Y.; Chen, Y. Fabrication and electrical characteristics of piezoelectric PMN-PZN-PZT ceramic transformers. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2007, 138, 277–283. [Google Scholar] [CrossRef]
- Joo, H.; Kim, I.; Song, J.; Jeong, S.; Kim, M. Piezoelectric properties of rosen-type piezoelectric transformer using 0.01Pb(Ni1/3Nb2/3)O3-0.08Pb(Mn1/3Nb2/3)O3-0.19Pb(Zr0.505Ti0.495)O3 ceramics. J. Kor. Phys. Soc. 2010, 56, 374–377. [Google Scholar] [CrossRef]
- Yoo, J. High dielectric and piezoelectric properties of low-temperature sintering PNN-PMN-PZT ceramics for low-loss piezoelectric actuator application. Trans. Electr. Electron. Mater. 2018, 19, 249–253. [Google Scholar] [CrossRef]
- Ra, C.M.; Yoo, J.H. Dielectric and piezoelectric properties of PMW-PNN-PZT ceramics as a function of ZnO addition. J. Korean Inst. Electr. Electron. Mater. Eng. 2015, 28, 165–169. [Google Scholar] [CrossRef]
- Li, H.L.; Zhang, Y.; Zhou, J.J.; Zhang, X.W.; Liu, H.; Fang, J.Z. Phase structure and electrical properties of xPZN-(1-x)PZT piezoceramics near the tetragonal/rhombohedral phase boundary. Ceram. Int. 2015, 41, 4822–4828. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Yan, Z.; Wang, A.; Jiang, P.; Zhong, M. Fabrication and performance of PNN-PZT piezoelectric ceramics obtained by low-temperature sintering. Sci. Eng. Compos. Mater. 2020, 27, 359–365. [Google Scholar] [CrossRef]
- Stevenson, T.; Martin, D.G.; Cowin, P.I.; Blumfield, A.; Bell, A.J.; Comyn, T.P.; Weaver, P.M. Piezoelectric materials for high temperature transducers and actuators. J. Mater. Sci. Mater. Electron. 2015, 26, 9256–9267. [Google Scholar] [CrossRef]
- Nie, R.; Zhang, Q.; Yue, Y.; Liu, H.; Chen, Y.; Chen, Q.; Zhu, J.; Yu, P.; Xiao, D. Phase structure-electrical property relationships in Pb(Ni1/3Nb2/3)O3-Pb(Zr,Ti)O3-based ceramics. J. Appl. Phys. 2016, 119, 124111. [Google Scholar] [CrossRef]
- Zheng, M.P.; Hou, Y.D.; Ge, H.Y.; Zhu, M.K.; Yan, H. Effect of NiO additive on microstructure, mechanical behavior and electrical properties of 0.2PZN-0.8PZT ceramics. J. Eur. Ceram. Soc. 2013, 33, 1447–1456. [Google Scholar] [CrossRef]
- Hamzioui, L.; Kahoul, F.; Boutarfaia, A. The effect of Nb2O5 addition on the structural, dielectric and piezoelectric properties of Pb0.98Ba0.02[(Zr0.52Ti0.48)0.98(Cr3+0.5,Ta5+0.5)0.02] ceramics. Energy Proc. 2015, 74, 198–204. [Google Scholar] [CrossRef][Green Version]
- Li, S.; Fu, J.; Zuo, R. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors. Ceram. Int. 2021, 47, 20117–20125. [Google Scholar] [CrossRef]
- Jeong, Y.; Yoo, J.; Lee, S.; Hong, J. Piezoelectric characteristics of low temperature sintering Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr0.50Ti0.50)O3 according to the addition of CuO and Fe2O3. Sens. Actuators A Phys. 2007, 135, 215–219. [Google Scholar] [CrossRef]
- Zheng, M.; Hou, Y.; Zhu, M.; Zhang, M.; Yan, H. Shift of morphotropic phase boundary in high-performance fine-grained PZN-PZT ceramics. J. Eur. Ceram. Soc. 2014, 34, 2275–2283. [Google Scholar] [CrossRef]
- Hamzioui, L.; Kahoul, F.; Boutarfaia, A.; Guemache, A.; Hamzioui, L.; Kahoul, F.; Boutarfaia, A.; Guemache, A.; Aillerie, M.; Hamzioui, L.; et al. Structure, dielectric and piezoelectric properties of Pb [(Zr0.45,Ti0.5)(Mn0.5,Sb0.5)0.05]O3 ceramics. Process. Appl. Ceram. 2021, 14, 19–24. [Google Scholar] [CrossRef]
- Kalem, V.; Timucin, M. Structural, piezoelectric and dielectric properties of PSLZT-PMnN ceramics. J. Eur. Ceram. Soc. 2013, 33, 105–111. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, T.; Lee, E.; Choi, N.G.; Jeong, H.S. Physical properties of PNN-PMN-PZT doped with zinc oxide and CLBO for ultrasonic transducer. Trans. Electr. Electron. Mater. 2017, 18, 334–337. [Google Scholar] [CrossRef]
- Kim, H.T.; Ji, J.H.; Kim, B.S.; Baek, J.S.; Koh, J.H. Engineered hard piezoelectric materials of MnO2 doped PZT-PSN ceramics for sensors applications. J. Asian Ceram. Soc. 2021, 9, 1083–1090. [Google Scholar] [CrossRef]
- Peng, Z.H.; Zheng, D.Y.; Zhou, T.; Yang, L.; Zhang, N.; Fang, C. Effects of Co2O3 doping on electrical properties and dielectric relaxation of PMS–PNN–PZT ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 5961–5968. [Google Scholar] [CrossRef]
- Dinh Tung Luan, N.; Vuong, L.D.; Van Chuong, T.; Truong Tho, N. Structure and physical properties of PZT-PMnN-PSN ceramics near the morphological phase boundary. Adv. Mater. Sci. Eng. 2014, 2014, 821404. [Google Scholar] [CrossRef]
- Mahmud, I.; Yoon, M.S.; Ur, S.C. Antimony oxide-doped 0.99Pb(Zr0.53Ti0.47)O3-0.01Bi(Y1−xSbx)O3 piezoelectric ceramics for energy-harvesting applications. Appl. Sci. 2017, 7, 960. [Google Scholar] [CrossRef]
- Kim, I.; Kim, M.; Jeong, S.; Song, J.; Joo, H.; Thang, V.V.; Muller, A. Properties of step-down multilayer piezo stack transformers using PNN-PMN-PZT ceramics with CeO2 addition. J. Kor. Phys. Soc. 2011, 58, 580–584. [Google Scholar] [CrossRef]
- Zhuo, Z.; Ling, Z.; Liu, Y. Phase composition and piezoelectric properties of Pb(Sb1/2Nb1/2)–PbTiO3–PbZrO3 ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 9524–9530. [Google Scholar] [CrossRef]
- Menasra, H.; Necira, Z.; Bouneb, K.; Maklid, A.; Boutarfaia, A. Microstructure and dielectric properties of Bi substituted PLZMST ceramics. Mater. Sci. Appl. 2013, 4, 293–298. [Google Scholar] [CrossRef][Green Version]
- Lin, S. Study on the radial vibration of a new type of composite piezoelectric transducer. J. Sound Vib. 2007, 306, 192–202. [Google Scholar] [CrossRef]
- Lin, S.; Hu, J.; Fu, Z. Electromechanical characteristics of piezoelectric ceramic transformers in radial vibration composed of concentric piezoelectric ceramic disk and ring. Smart Mater. Struct. 2013, 22, 045018. [Google Scholar] [CrossRef]
- Meyer, Y.; Lachat, R. Vibration characterization procedure of piezoelectric ceramic parameters—Application to low-cost thin disks made of piezoceramics. MATEC Web Conf. 2015, 20, 01003. [Google Scholar] [CrossRef]
- Kim, D.J.; Oh, S.H.; Kim, J.O. Measurements of radial in-plane vibration characteristics of piezoelectric disk transducers. Trans. Kor. Soc. Noise Vib. Eng. 2015, 25, 13–23. [Google Scholar] [CrossRef]
- Kim, J.-W.; Park, C.-H.; Chong, H.-H.; Jeong, S.-S.; Park, T.-G. Design and fabrication of a thin-type ultrasonic motor. J. Kor. Inst. Electr. Electron. Mater. Eng. 2010, 23, 525–529. [Google Scholar] [CrossRef][Green Version]
- Wang, G.; Qin, L.; Wang, L.K. Non direction high-frequency underwater transducer. Second Int. Conf. Smart Mater. Nanotechnol. Eng. 2009, 7493, 749354. [Google Scholar] [CrossRef]
- Kim, J.O.; Lee, J.G.; Chun, H.Y. Radial vibration characteristics of spherical piezoelectric transducers. Ultrasonics 2005, 43, 531–537. [Google Scholar] [CrossRef]
- Piao, C.; Kim, J.O. Vibration characteristics of an ultrasonic transducer of two piezoelectric discs. Ultrasonics 2017, 74, 72–80. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-W.; Lee, H.-C. Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors. Micromachines 2022, 13, 158. https://doi.org/10.3390/mi13020158
Kim S-W, Lee H-C. Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors. Micromachines. 2022; 13(2):158. https://doi.org/10.3390/mi13020158
Chicago/Turabian StyleKim, So-Won, and Hee-Chul Lee. 2022. "Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors" Micromachines 13, no. 2: 158. https://doi.org/10.3390/mi13020158
APA StyleKim, S.-W., & Lee, H.-C. (2022). Design and Preparation of Self-Oscillating Actuators Using Piezoelectric Ceramics with High Coupling Factors and Mechanical Quality Factors. Micromachines, 13(2), 158. https://doi.org/10.3390/mi13020158