Fiber Temperature Sensor Based on Vernier Effect and Optical Time Stretching Method
Abstract
1. Introduction
2. Experimental Setup and Working Principle
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, X.; Huang, Z.; Li, Q.; Cao, X.; Wang, Y.; Fu, G.; Jin, W.; Bi, W. A cascaded triple waist-enlarged taper few-mode fiber temperature sensor with beaded structure. Opt. Laser Technol. 2022, 156, 108621. [Google Scholar] [CrossRef]
- Su, B.; Qi, B.; Zhang, F.; Zhong, L.; Xu, O.; Qin, Y. Hybrid fiber interferometer sensor for simultaneous measurement of strain and temperature with refractive index insensitivity. Opt. Commun. 2022, 522, 128637. [Google Scholar] [CrossRef]
- Wade, S.A.; Collins, S.F.; Baxter, G.W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 2003, 94, 4743–4756. [Google Scholar] [CrossRef]
- Bao, X.; Chen, L. Recent progress in distributed fiber optic sensors. Sensors 2012, 12, 8601–8639. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, J.; Wang, S.; Li, B.; Wang, M. Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 2011, 36, 3753–3755. [Google Scholar] [CrossRef]
- Xiao, S.; Wu, B.; Sun, C.; Wang, Z.; Jiang, Y. Strain and Temperature Discrimination Based on a Mach-Zehnder Interferometer With Cascaded Single Mode Fibers. Photonic Sens. 2023, 13, 230122. [Google Scholar] [CrossRef]
- Liao, C.R.; Wang, Y.; Wang, D.N.; Yang, M.W. Fiber In-Line Mach–Zehnder Interferometer Embedded in FBG for Simultaneous Refractive Index and Temperature Measurement. IEEE Photonics Technol. Lett. 2010, 22, 1686–1688. [Google Scholar] [CrossRef]
- Yao, Q.; Meng, H.; Wang, W.; Xue, H.; Xiong, R.; Huang, B.; Tan, C.; Huang, X. Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating. Sens. Actuators A Phys. 2014, 209, 73–77. [Google Scholar] [CrossRef]
- Tong, Z.; Wang, L.; Duan, T.; Geng, Y.; Li, X.; Yi, D.; Hong, X. High resolution polymer/air double-cavity Fabry–Perot fiber temperature sensor based on exposed core microstructured fiber. J. Phys. D Appl. Phys. 2022, 55, 385107. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Pan, C.; Yang, M. Sapphire Fiber Fabry-Perot Sensors With High Fringe Visibility. IEEE Photonics J. 2022, 14, 1–8. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, H.; Jiang, C.; Guo, X.; Zhang, H.; Wang, P.; Sun, S. In-fiber Fabry-Perot temperature sensor using silicone-oil-filled the quartz capillary tube. Opt. Fiber Technol. 2022, 71, 102937. [Google Scholar] [CrossRef]
- Wang, T.; Mao, Y.; Liu, B.; Zhao, L.; Ren, J.; Zheng, J.; Wan, Y. Compact Fiber Optic Sensor for Temperature and Transverse Load Measurement Based on the Parallel Vernier Effect. IEEE Photonics J. 2022, 14, 1–8. [Google Scholar] [CrossRef]
- Xiong, Z.; Guan, C.; Duan, Z.; Cheng, T.; Ye, P.; Yang, J.; Shi, J.; Yang, J.; Yuan, L.; Grattan, K.T.V. All-optical vector magnetic field sensor based on a side-polished two-core fiber Michelson interferometer. Opt. Express 2022, 30, 22746. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Liao, C.; Sun, B.; He, J.; Yin, G.; Liu, S.; Li, Z.; Wang, G.; Zhong, X.; et al. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer. Sens. Actuators B Chem. 2015, 208, 315–319. [Google Scholar] [CrossRef]
- Qi, K.; Zhang, Y.; Sun, J.; Guo, Y.; Wu, Y. Fiber Bending Sensor With Turning Point in a Multimode Fiber Peanut-Like Structure. IEEE Sens. J. 2022, 22, 7772–7778. [Google Scholar] [CrossRef]
- Wei, F.; Liu, D.; Wang, Z.; Wang, Z.; Farrell, G.; Wu, Q.; Peng, G.-D.; Semenova, Y. Enhancing the Visibility of Vernier Effect in a Tri-Microfiber Coupler Fiber Loop Interferometer for Ultrasensitive Refractive Index and Temperature Sensing. J. Light. Technol. 2021, 39, 1523–1529. [Google Scholar] [CrossRef]
- Starodumov, A.N.; Zenteno, L.A.; Monzon, D.; De La Rosa, E. Fiber Sagnac interferometer temperature sensor. Appl. Phys. Lett. 1997, 70, 19–21. [Google Scholar] [CrossRef]
- Lin, W.; Shao, L.; Yibin, L.; Bandyopadhyay, S.; Yuhui, L.; Weijie, X.; Shuaiqi, L.; Jie, H.; Vai, M.I. Temperature Sensor Based on Fiber Ring Laser With Cascaded Fiber Optic Sagnac Interferometers. IEEE Photonics J. 2021, 13, 1–12. [Google Scholar] [CrossRef]
- Shao, L.-Y.; Luo, Y.; Zhang, Z.; Zou, X.; Luo, B.; Pan, W.; Yan, L. Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect. Opt. Commun. 2015, 336, 73–76. [Google Scholar] [CrossRef]
- Albert, J.; Shao, L.-Y.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Fu, H.Y.; Tam, H.Y.; Shao, L.Y.; Dong, X.; Wai, P.K.; Lu, C.; Khijwania, S.K. Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl. Opt. 2008, 47, 2835–2839. [Google Scholar] [CrossRef] [PubMed]
- Caucheteur, C.; Shevchenko, Y.; Shao, L.Y.; Wuilpart, M.; Albert, J. High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement. Opt. Express 2011, 19, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Hu, J.; Zhao, F.; Sun, S.; Liu, Y.; Liu, S.; Yu, F.; Mak, P.U.; Pun, S.H.; Shum, P.P.; et al. Adaptive Fiber-Ring Lasers Based on Isopropanol Filled Microfiber Coupler for High-Sensitivity Temperature Sensing. Micromachines 2022, 13, 1697. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, W.; Sun, G. Broadly Tunable Erbium-Doped Fiber Ring Laser Based on Tapered Polarization Maintaining Fiber. IEEE Photonics J. 2022, 14, 1–5. [Google Scholar] [CrossRef]
- Qin, Q.; Yan, F.; Liu, Y.; Cheng, D.; Yu, C.; Yang, D.; Wang, X.; Jiang, Y.; Suo, Y.; Kumamoto, K.; et al. Thulium-doped fiber laser with bidirectional output in a ring laser cavity. Opt. Laser Technol. 2022, 155, 108390. [Google Scholar] [CrossRef]
- Hu, X.-G.; Zhao, Y.; Peng, Y.; Tong, R.-J.; Zheng, H.-K.; Zhao, J.; Hu, S. In-fiber optofluidic michelson interferometer for detecting small volume and low concentration chemicals with a fiber ring cavity laser. Sens. Actuators B Chem. 2022, 370, 132467. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, X.; Tang, C.; Gao, H.; Zhao, C. Spectral splicing for an OFDR sensing system using a DBR laser. Appl. Opt. 2022, 61, 5435–5441. [Google Scholar] [CrossRef]
- Li, R.; Hu, Z.; Li, H.; Zhao, Y.; Liu, K.; Tu, Y.; Du, Z.; Yu, Q.; Yu, B.; Lu, L. All-Fiber Laser-Self-Mixing Interferometer With Adjustable Injection Intensity for Remote Sensing of 40 km. J. Light. Technol. 2022, 40, 4863–4870. [Google Scholar] [CrossRef]
- Guan, B.O.; Tam, H.Y.; Lau, S.T.; Chan, H.L. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser. IEEE Photonics Technol. Lett. 2005, 17, 169–171. [Google Scholar] [CrossRef]
- Wang, C.; Yao, J. Ultrafast and Ultrahigh-Resolution Interrogation of a Fiber Bragg Grating Sensor Based on Interferometric Temporal Spectroscopy. J. Light. Technol. 2011, 29, 2927–2933. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Lu, Z.; Wang, G.; Wang, X.; Ran, Y.; Feng, X.; Guan, B.O. High-speed refractive index sensing system based on Fourier domain mode locked laser. Opt. Express 2019, 27, 7988–7996. [Google Scholar] [CrossRef] [PubMed]
- Yao, J. Microwave Photonics. J. Light. Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Wang, G.; Liao, B.; Cao, Y.; Feng, X.; Guan, B.O.; Yao, J. Microwave Photonic Interrogation of a High-Speed and High-Resolution Temperature Sensor Based on Cascaded Fiber-Optic Sagnac Loops. J. Light. Technol. 2021, 39, 4041–4048. [Google Scholar] [CrossRef]
- Bai, Z.; Yan, F.; Tang, M.; Han, W.; Cheng, D.; Zhang, L.; Wang, W.; Guan, B.; Zhou, H. Real-Time Strain Interrogation Based on an STS Structure and Wavelength-to-Time Mapping. IEEE Photonics Technol. Lett. 2021, 33, 615–618. [Google Scholar] [CrossRef]
- Bai, Z.; Yan, F.; Han, W.; Zhang, L.; Cheng, D.; Wang, W.; Li, T.; Qin, Q.; Guo, Y.; Du, X.; et al. Ultrafast and temperature-insensitive strain interrogation using a PM-PCF based Sagnac loop interferometer and wavelength-to-time mapping. Opt. Express 2021, 29, 13778–13786. [Google Scholar] [CrossRef]
- Shi, M.; Li, S.; Chen, H. A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol. Appl. Phys. B 2018, 124, 94. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, X.; Zuo, C.; Gui, L.; Shi, J.; Zhao, X.; Mu, S.; Liu, J.; Yu, B. Highly sensitive temperature and strain sensor based on fiber Sagnac interferometer with Vernier effect. Opt. Commun. 2022, 506, 127543. [Google Scholar] [CrossRef]
- Jing, Z.; Xueguang, Q.; Tuan, G.; Yinyan, W.; Ruohui, W.; Yue, M.; Qiangzhou, R.; Manli, H.; Zhongyao, F. Highly Sensitive Temperature Sensor Using PANDA Fiber Sagnac Interferometer. J. Light. Technol. 2011, 29, 3640–3644. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Xu, D.; Zhang, H.; Su, G.; Duan, L.; Yan, C.; Yan, D.; Fu, S.; Yao, J. Temperature Sensor Based on Fiber Ring Laser With Sagnac Loop. IEEE Photonics Technol. Lett. 2016, 28, 794–797. [Google Scholar] [CrossRef]
- Ruan, J.; Hu, L.; Lu, A.; Lu, W.; Zhu, J.; Xu, H. Temperature Sensor Employed TCF-PMF Fiber Structure-Based Sagnac Interferometer. IEEE Photonics Technol. Lett. 2017, 29, 1364–1366. [Google Scholar] [CrossRef]
- Lu, H.; Yue, Y.; Du, J.; Shao, L.; Wu, T.; Pan, J.; Hu, J. Temperature and liquid refractive index sensor using P-D fiber structure-based Sagnac loop. Opt. Express 2018, 26, 18920–18927. [Google Scholar] [CrossRef] [PubMed]
- He, X.L.; Wang, D.H.; Wang, X.B.; Xia, Q.; Li, W.C.; Liu, Y.; Wang, Z.Q.; Yuan, L.B. A Cascade Fiber Optic Sensors for Simultaneous Measurement of Strain and Temperature. IEEE Sens. Lett. 2019, 3, 1–4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.; Liu, Y.; Liu, Y.; Shum, P.P.; Vai, M.I. Fiber Temperature Sensor Based on Vernier Effect and Optical Time Stretching Method. Micromachines 2022, 13, 2215. https://doi.org/10.3390/mi13122215
Lin W, Liu Y, Liu Y, Shum PP, Vai MI. Fiber Temperature Sensor Based on Vernier Effect and Optical Time Stretching Method. Micromachines. 2022; 13(12):2215. https://doi.org/10.3390/mi13122215
Chicago/Turabian StyleLin, Weihao, Yuhui Liu, Yibin Liu, Perry Ping Shum, and Mang I Vai. 2022. "Fiber Temperature Sensor Based on Vernier Effect and Optical Time Stretching Method" Micromachines 13, no. 12: 2215. https://doi.org/10.3390/mi13122215
APA StyleLin, W., Liu, Y., Liu, Y., Shum, P. P., & Vai, M. I. (2022). Fiber Temperature Sensor Based on Vernier Effect and Optical Time Stretching Method. Micromachines, 13(12), 2215. https://doi.org/10.3390/mi13122215