A Micro Air Velocity Sensor for Measuring the Internal Environment of the Cold Air Ducts of Heating, Ventilation, and Air Conditioning Systems
Abstract
1. Introduction
2. Research Method
2.1. Design of Flexible Micro Air Velocity Sensor
2.2. Comparisons between Commercial Air Velocity Sensors and the Home-Built Micro Air Velocity Sensor
3. Results and Discussion
3.1. Calibration of the Home-Built Wireless Flexible Micro Air Velocity Sensor
3.2. Calibration and Comparison of Home-Built Wireless Flexible Micro Air Velocity Sensor and FS7.0.1L.195 Commercial Air Velocity Sensor
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Elsheniti, M.B.; Dawood, M.M.; Abdelaziz, A.H.; Elhelw, M. Thermo-economic study on the use of desiccant-packed aluminum-foam heat exchangers in a new air-handling unit for high moisture-removal. Case Stud. Therm. Eng. 2022, 33, 101967–101982. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Tao, R.; Torun, H.; Xie, J.; Li, Y.; Fu, C.; Luo, J.; Wu, Q.; Ng, W.P. Flexible ZnO thin film acoustic wave device for gas flow rate measurement. J. Micromech. Microeng. 2020, 30, 19551265–19551268. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, M.; Ma, Z.; Zhang, J. Resistance characteristic analysis based study on a novel damper torque airflow sensor for VAV terminals. Build. Environ. 2020, 175, 106813–106823. [Google Scholar] [CrossRef]
- Shinoda, J.; Mylonas, A.; Kazanci, O.B.; Tanabe, S.; Olesen, B.W. Differences in temperature measurement by commercial room temperature sensors: Effects of room cooling system, loads, sensor type and position. Energy Build. 2021, 231, 110630–110642. [Google Scholar] [CrossRef]
- Chen, W.J.; Teng, T.P. A compensation algorithm to reduce humidity ratio error due to asynchronous humidity and temperature sensor time constants. Build. Environ. 2021, 190, 107555–107568. [Google Scholar] [CrossRef]
- Duy, L.T.; Baek, J.Y.; Mun, Y.J.; Seo, H. Patternable production of SrTiO3 nanoparticles using 1-W laser directly on flexible humidity sensor platform based on ITO/SrTiO3/CNT. J. Mater. Sci. Technol. 2021, 71, 186–194. [Google Scholar] [CrossRef]
- Asim, N.; Badiei, M.; Mohammad, M.; Razali, H.; Rajabi, A.; Haw, L.C.; Ghazali, M.J. Sustainability of heating, ventilation and air-conditioning (HVAC) systems in buildings—An overview. Int. J. Environ. Res. Public Health 2022, 19, 1016–1031. [Google Scholar] [CrossRef]
- Ligęza, P. Method of testing fast-changing and pulsating flows by means of a hot-wire anemometer with simultaneous measurement of voltage and current of the sensor. Measurement 2022, 187, 110291–110295. [Google Scholar] [CrossRef]
- Ligęza, P. Modification of hot-wire anemometers frequency bandwidth measurement method. Sensors 2020, 20, 1595–1601. [Google Scholar] [CrossRef]
- Hardianto, T.; Supeno, B.; Setiawan, D.K.; Gunawan, G. Design of real time anemometer based on wind speed-direction and temperature. Int. J. Power Electron. Drive Syst. 2017, 8, 677–685. [Google Scholar] [CrossRef]
- Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K. Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl. Mater. Interfaces 2015, 7, 5863–5869. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, V.K.; Patel, R.; Boolchandani, D.; Varma, T.; Rangrac, K. Sensitivity and reliability enhancement of a MEMS based wind speed sensor. Microelectron. Reliab. 2020, 104, 113513–113518. [Google Scholar] [CrossRef]
- Tang, X.; Hou, W.; Zheng, Q.; Fang, L.; Zhu, R.; Zheng, L. Self-powered wind sensor based on triboelectric nanogenerator for detecting breeze vibration on electric transmission lines. Nano Energy 2022, 99, 107412–107418. [Google Scholar] [CrossRef]
- Kou, H.; Tan, Q.; Wang, Y.; Zhang, G.; Su, S.; Xiong, J. A wireless slot-antenna integrated temperature-pressure-humidity sensor loaded with CSRR for harsh-environment applications. Sens. Actuators B Chem. 2020, 311, 127907–127917. [Google Scholar] [CrossRef]
- Xiaoqi, F.D.; Wong, C.; Li, C.W.; Li, J.D. Optimization and determination of the frequency response of constant-temperature hot-wire anemometers. AIAA J. 2017, 55, 2537–2543. [Google Scholar]
- Duan, J.; Chen, X.; Xie, Z.; Zhang, L. Correction of field-measured wind speed affected by deterministic interference factors. Appl. Sci. 2022, 12, 1868–1881. [Google Scholar] [CrossRef]
- Ligęza, P. Dynamic error correction method in tachometric anemometers for measurements of wind energy. Energies 2022, 15, 4132–4140. [Google Scholar] [CrossRef]
- Ligęza, P. Interaction between the standard and the measurement instrument during the flow velocity sensor calibration process. Processes 2021, 9, 1792–1801. [Google Scholar]
- Yi, Z.; Wan, Y.; Qin, M.; Huang, Q.A. Novel anemometer based on inductor bending effect. J. Microelectromech. Syst. 2019, 28, 321–323. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, Y.; Zhao, S.; Hu, N.; Jiang, Y.; Li, H.; Wang, Y.; Gao, H.; Li, Y.; Yuan, M.; et al. A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy 2021, 89, 106382–106389. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, Y.; Dai, X.; Han, J.; Dong, B.; Huang, L.B. Calliopsis structure-based triboelectric nanogenerator for harvesting wind energy and self-powerd wind speed/direction sensor. Mater. Des. 2022, 221, 111005. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, S.J.; Chen, C.H.; Hsieh, C.L.; Wen, S.H.; Chiu, C.W.; Jiang, C.A. Internal real-time microscopic diagnosis of vanadium redox flow battery. Sens. Actuators A Phys. 2020, 314, 112259–112265. [Google Scholar] [CrossRef]
Model | F660/F662 (Currently in Use) | FS7.0.0l.195 | Home-Built Micro Sensor |
---|---|---|---|
Response time | 400 ms | 200 ms | 1 ms |
Operating measuring range | 0.15–20 m/s | 0–100 m/s | 0.15–20 m/s |
Operating temperature range | −5–60 °C | −20–150 °C | −20–250 °C |
Output | Velocity, Temperature | Velocity | Velocity |
Velocity accuracy | ±5% | <3% | ±3% |
Price | NT4000 | NT560 | NT470 |
Length | 39.1 mm | 202 mm (including wire) | 70 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Wang, X.-W.; Liu, C.-K. A Micro Air Velocity Sensor for Measuring the Internal Environment of the Cold Air Ducts of Heating, Ventilation, and Air Conditioning Systems. Micromachines 2022, 13, 2198. https://doi.org/10.3390/mi13122198
Lee C-Y, Wang X-W, Liu C-K. A Micro Air Velocity Sensor for Measuring the Internal Environment of the Cold Air Ducts of Heating, Ventilation, and Air Conditioning Systems. Micromachines. 2022; 13(12):2198. https://doi.org/10.3390/mi13122198
Chicago/Turabian StyleLee, Chi-Yuan, Xin-Wen Wang, and Chen-Kai Liu. 2022. "A Micro Air Velocity Sensor for Measuring the Internal Environment of the Cold Air Ducts of Heating, Ventilation, and Air Conditioning Systems" Micromachines 13, no. 12: 2198. https://doi.org/10.3390/mi13122198
APA StyleLee, C.-Y., Wang, X.-W., & Liu, C.-K. (2022). A Micro Air Velocity Sensor for Measuring the Internal Environment of the Cold Air Ducts of Heating, Ventilation, and Air Conditioning Systems. Micromachines, 13(12), 2198. https://doi.org/10.3390/mi13122198