Enhanced Red Emission from Amorphous Silicon Carbide Films via Nitrogen Doping
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ni, Z.; Zhou, S.; Zhao, S.; Peng, W.; Yang, D.; Pi, X. Silicon nanocrystals: Unfading silicon materials for optoelectronics. Mater. Sci. Eng. R Rep. 2019, 138, 85–117. [Google Scholar] [CrossRef]
- Nevin, W.A.; Yamagishi, H.; Yamaguchi, M.; Tawada, Y. Emission of blue light from hydrogenated amorphous silicon carbide. Nature 1994, 368, 529–531. [Google Scholar] [CrossRef]
- Giorgis, F.; Mandracci, P.; Negro, L.D.; Mazzoleni, C.; Pavesi, L. Optical absorption and luminescence properties of wide-band gap amorphous silicon based alloys. J. Non-Cryst. Solids 2000, 266–269, 588–592. [Google Scholar] [CrossRef]
- Fan, J.Y.; Wu, X.L.; Chu, P.K. Low-dimensional SiC nanostructures: Fabrication, luminescence, and electrical properties. Prog. Mater. Sci. 2006, 51, 983–1031. [Google Scholar] [CrossRef]
- Vasin, A.V.; Kolesnik, S.P.; Konchits, A.A.; Rusavsky, A.V.; Lysenko, V.S.; Nazarov, A.N.; Ishikawa, Y.; Koshka, Y. Structure, paramagnetic defects and light-emission of carbon-rich 𝑎-SiC:H films. J. Appl. Phys. 2008, 103, 123710. [Google Scholar] [CrossRef]
- Beke, D.; Szekrényes, Z.; Czigány, Z.; Kamarás, K.; Gali, Á. Dominant luminescence is not due to quantum confinement in molecular-sized silicon carbide nanocrystals. Nanoscale 2015, 7, 10982–10988. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Suendo, V.; Abramov, A.; Yu, L.; Roca i Cabarrocas, P. Strongly enhanced tunable photoluminescence in polymorphous silicon carbon thin films via excitation-transfer mechanism. Appl. Phys. Lett. 2010, 97, 221113. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, R.; Zhang, Y.; Song, J.; Li, H.; Guo, Y.; Song, C. Defect emission and optical gain in SiCxOy: H films. ACS Appl. Mat. Interfaces 2017, 9, 22725–22731. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, J.; Sun, T.; Zhang, Y.; Xu, J.; Li, W.; Chen, K. Enhanced subband light emission from Si quantum dots/SiO2 multilayers via phosphorus and boron co-doping. Opt. Express 2022, 30, 12308–12315. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.R.; Pai, Y.H.; Lin, C.T.; Chen, C.C. Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes. Appl. Phys. Lett. 2010, 96, 263514. [Google Scholar] [CrossRef]
- Wang, F.; Li, N.; Jin, L.; Yang, D.; Que, D. Reduction of the efficiency droop in silicon nitride light-emitting devices by localized surface plasmons. Appl. Phys. Lett. 2013, 102, 081108. [Google Scholar] [CrossRef]
- Huh, C.; Kim, B.K.; Park, B.-J.; Jang, E.-H.; Kim, S.-H. Enhancement in electron transport and light emission efficiency of a Si nanocrystal light-emitting diode by a SiCN/SiC superlattice structure. Nanoscale Res. Lett. 2013, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, C.; Li, S.; Dai, X.; Ma, X.; Gao, R.; Zhou, W.; Lu, M. Enhancing light emission of Si nanocrystals by means of high-pressure hydrogenation. Opt. Express 2020, 28, 23320–23328. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Luo, T.Y.; Zhou, M.; Abroshan, H.; Huang, J.; Kim, H.J.; Rosi, N.L.; Shao, Z.; Jin, R. Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law. ACS Nano 2016, 10, 8385–8393. [Google Scholar] [CrossRef] [PubMed]
- Molinari, M.; Rinnert, H.; Vergnat, M. Improvement of the photoluminescence properties in a-SiNx films by introduction of hydrogen. Appl. Phys. Lett. 2001, 79, 2172. [Google Scholar] [CrossRef][Green Version]
- Huang, R.; Song, J.; Wang, X.; Guo, Y.Q.; Song, C.; Zheng, Z.H.; Wu, X.L.; Chu, P.K. Origin of strong white electroluminescence from dense Si nanodots embedded in silicon nitride. Opt. Lett. 2012, 37, 692–694. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Haberl, B.; Bogle, S.N.; Li, T.; McKerracher, I.; Ruffell, S.; Munroe, P.; Williams, J.S.; Abelson, J.R.; Bradby, J.E. Unexpected short- and medium-range atomic structure of sputtered amorphous silicon upon thermal annealing. J. Appl. Phys. 2011, 110, 096104. [Google Scholar] [CrossRef]
- Rui, Y.; Chen, D.; Xu, J.; Zhang, Y.; Yang, L.; Mei, J.; Ma, Z.; Cen, Z.; Li, W.; Xu, L.; et al. Hydrogen-induced recovery of photoluminescence from annealed a-Si:H∕a-SiO2 multilayers. J. Appl. Phys. 2005, 98, 033532. [Google Scholar] [CrossRef]
- Ren, Y.; Weber, K.J.; Nursam, N.M.; Wang, D. Effect of deposition conditions and thermal annealing on the charge trapping properties of SiNx films. Appl. Phys. Lett. 2010, 97, 202907. [Google Scholar] [CrossRef]
- Lin, Z.; Huang, R.; Song, J.; Guo, Y.; Lin, Z.; Zhang, Y.; Xia, L.; Zhang, W.; Li, H.; Song, C.; et al. Engineering CsPbBr3 quantum dots with efficient luminescence and stability by damage-free encapsulation with a-SiCx:H. J. Lumin. 2021, 236, 118086. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Chen, S.; Lin, Z.; Huang, R.; Guo, Y. Enhanced Red Emission from Amorphous Silicon Carbide Films via Nitrogen Doping. Micromachines 2022, 13, 2043. https://doi.org/10.3390/mi13122043
Chen G, Chen S, Lin Z, Huang R, Guo Y. Enhanced Red Emission from Amorphous Silicon Carbide Films via Nitrogen Doping. Micromachines. 2022; 13(12):2043. https://doi.org/10.3390/mi13122043
Chicago/Turabian StyleChen, Guangxu, Sibin Chen, Zewen Lin, Rui Huang, and Yanqing Guo. 2022. "Enhanced Red Emission from Amorphous Silicon Carbide Films via Nitrogen Doping" Micromachines 13, no. 12: 2043. https://doi.org/10.3390/mi13122043
APA StyleChen, G., Chen, S., Lin, Z., Huang, R., & Guo, Y. (2022). Enhanced Red Emission from Amorphous Silicon Carbide Films via Nitrogen Doping. Micromachines, 13(12), 2043. https://doi.org/10.3390/mi13122043