Perovskite Random Lasers, Process and Prospects
Abstract
1. Introduction
2. Perovskite QD RLs
3. Perovskite Film RLs
4. Perovskite RL Applications
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Yu, S.F. Electrically Pumped Random Lasers. J. Phys. D Appl. Phys. 2015, 48, 483001. [Google Scholar] [CrossRef]
- Wiersma, D.S. The Physics and Applications of Random Lasers. Nat. Phys. 2008, 4, 359–367. [Google Scholar] [CrossRef]
- Luan, F.; Gu, B.; Gomes, A.S.L.; Yong, K.T.; Wen, S.; Prasad, P.N. Lasing in Nanocomposite Random Media. Nano Today 2015, 10, 168–192. [Google Scholar] [CrossRef]
- Gomes, A.S.L.; Moura, A.L.; de Araújo, C.B.; Raposo, E.P. Recent Advances and Applications of Random Lasers and Random Fiber Lasers. Prog. Quant. Electron. 2021, 78, 100343. [Google Scholar] [CrossRef]
- Azmi, A.N.; Wan Ismail, W.Z.; Abu Hassan, H.; Halim, M.M.; Zainal, N.; Muskens, O.L.; Wan Ahmad Kamil, W.M. Review of Open Cavity Random Lasers as Laser-Based Sensors. ACS Sens. 2022, 7, 914–928. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Xu, Z.; Chio, S.H.; Sun, X.; Xiao, S.; Akkus, O.; Young, L.K. Detection of Nanoscale Structural Changes in Bone Using Random Lasers. Biomed. Opt. Express 2010, 1, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.M.; Liao, W.C.; Chang, S.W.; Hou, C.F.; Tai, C.T.; Su, C.Y.; Hsu, Y.T.; Wu, M.H.; Chou, R.J.; Lee, Y.H.; et al. Inkjet-Printed Random Lasers. Adv. Mater. Technol. 2018, 3, 1800214. [Google Scholar] [CrossRef]
- Pramanik, A.; Mondal, K.; Biswas, S.; Pal, S.K.; Ghosh, S.K.; Ganguly, T.; Kumbhakar, P. Sticky Note Paper-Based Plasmonic Random Laser for Artifact-Free Imaging. Appl. Phys. B 2022, 128, 167. [Google Scholar] [CrossRef]
- Ni, Y.; Wan, H.; Liang, W.; Zhang, S.; Xu, X.; Li, L.; Shao, Y.; Ruan, S.; Zhang, W. Random Lasing Carbon Dot Fibers for Multilevel Anti-Counterfeiting. Nanoscale 2021, 13, 16872–16878. [Google Scholar] [CrossRef]
- Lahoz, F.; Acebes, A.; González-Hernández, T.; de Armas-Rillo, S.; Soler-Carracedo, K.; Cuesto, G.; Mesa-Infante, V. Random Lasing in Brain Tissues. Org. Electron. 2019, 75, 105389. [Google Scholar] [CrossRef]
- Chang, S.W.; Liao, W.C.; Liao, Y.M.; Lin, H.I.; Lin, H.Y.; Lin, W.J.; Lin, S.Y.; Perumal, P.; Haider, G.; Tai, C.T.; et al. A White Random Laser. Sci. Rep. 2018, 8, 2720. [Google Scholar] [CrossRef] [PubMed]
- Lawandy, N.M.; Balachandran, R.M.; Gomes, A.S.L.; Sauvaln, E. Laser Action in Strongly Scattering Media. Nature 1994, 368, 436–438. [Google Scholar] [CrossRef]
- Cao, H.; Zhao, Y.G.; Ho, S.T.; Seelig, E.W.; Wang, Q.H.; Chang, R.P.H. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 1999, 82, 2278–2281. [Google Scholar] [CrossRef]
- Ning, S.; Wu, Z.; Dong, H.; Ma, L.; Jiao, B.; Ding, L.; Ding, L.; Zhang, F. The Enhanced Random Lasing from Dye-Doped Polymer Films with Different-Sized Silver Nanoparticles. Org. Electron. 2016, 30, 165–170. [Google Scholar] [CrossRef]
- Ziegler, J.; Djiango, M.; Vidal, C.; Hrelescu, C.; Klar, T.A. Gold Nanostars for Random Lasing Enhancement. Opt. Express 2015, 23, 15152–15159. [Google Scholar] [CrossRef]
- Zhu, J.L.; Li, W.H.; Sun, Y.; Lu, J.G.; Song, X.L.; Chen, C.Y.; Zhang, Z.; Su, Y. Random Laser Emission in A Sphere-Phase Liquid Crystal. Appl. Phys. Lett. 2015, 106, 191903. [Google Scholar] [CrossRef]
- Ismail, W.Z.W.; Vo, T.P.; Goldys, E.M.; Dawes, J.M. Plasmonic Enhancement of Rhodamine Dye Random Lasers. Laser Phys. 2015, 25, 085001. [Google Scholar] [CrossRef]
- Tolentino Dominguez, C.; Vieira, M.S.; Oliveira, R.M.; Ueda, M.; de Araújo, C.B.; Gomes, A.S.L. Three-Photon Excitation of An Upconversion Random Laser in ZnO-on-Si Nanostructured Films. J. Opt. Soc. Am. B 2014, 31, 1975. [Google Scholar] [CrossRef]
- Fujiwara, H.; Niyuki, R.; Ishikawa, Y.; Koshizaki, N.; Tsuji, T.; Sasaki, K. Low-Threshold and Quasi-single-mode Random Laser within A Submicrometer-sized ZnO Spherical Particle Film. Appl. Phys. Lett. 2013, 102, 061110. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.; Yang, M.; Shi, L.J.; Deng, L.; Yang, H. Bichromatic Coherent Random Lasing from Dye-doped Polymer Stabilized Blue Phase Liquid Crystals Controlled by Pump Light Polarization. Chin. Phys. B 2016, 25, 094217. [Google Scholar] [CrossRef]
- Dai, G.; Wang, L.; Deng, L. Flexible Random Laser from Dye Doped Stretchable Polymer Film Containing Nematic Liquid Crystal. Opt. Mater. Express 2019, 10, 68–75. [Google Scholar] [CrossRef]
- Wang, Q.; Tong, Y.; Ye, H.; Liang, X.; Yang, K.; Xiang, W. Dual-Protective CsPbX3 Perovskite Nanocomposites with Improved Stability for Upconverted Lasing and Backlight Displays. ACS Sustain. Chem. Eng. 2021, 9, 11548–11555. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, S.; Huang, S.; Zhang, J.; Lyu, M.; Lu, H.; Zhu, J. Ligand-Mediated CsPbBrxI3−x/SiO2 Quantum Dots for Red, Stable and Low-Threshold Amplify Spontaneous Emission. Nanotechnology 2022, 33, 285201. [Google Scholar] [CrossRef] [PubMed]
- Dipold, J.; Magalhaes, E.S.; Bordon, C.D.S.; Kassab, L.R.P.; Wetter, N.U.; Digonnet, M.J.; Jiang, S. Emission Properties Study of a Nd3+-doped TZA Glass Random Laser. In Proceedings of the Optical Components and Materials XIX, San Francisco, CA, USA, 12 April 2022; p. 119970I. [Google Scholar]
- Wang, L.; Wan, Y.; Shi, L.; Zhong, H.; Deng, L. Electrically Controllable Plasmonic Enhanced Coherent Random Lasing from Dye-doped Nematic Liquid Crystals Containing Au Nanoparticles. Opt. Express 2016, 24, 17593–17602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhong, H.; Chen, C.; Wu, X.G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533–4542. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, T.; Burlingame, Q.; Liu, T.; Holley, R.; Cheng, G.; Yao, N.; Gao, F.; Loo, Y. Accelerated Aging of All-Inorganic, Interface-Stabilized Perovskite Solar Cells. Science 2022, 377, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; et al. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15, 10775–10981. [Google Scholar] [CrossRef]
- Otero-Martinez, C.; Ye, J.; Sung, J.; Pastoriza-Santos, I.; Perez-Juste, J.; Xia, Z.; Rao, A.; Hoye, R.L.Z.; Polavarapu, L. Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties, and Application in Light-Emitting Diodes. Adv. Mater. 2022, 34, 2107105. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Bai, Z.; Zhong, H. In Situ Fabricated Perovskite Nanocrystals: A Revolution in Optical Materials. Adv. Opt. Mater. 2018, 6, 1800380. [Google Scholar] [CrossRef]
- Veldhuis, S.A.; Boix, P.P.; Yantara, N.; Li, M.; Sum, T.C.; Mathews, N.; Mhaisalkar, S.G. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 2016, 28, 6804–6834. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Qin, Z.; Wang, Y.; Wu, Y.; Chen, W.; Zhang, S.; Cai, M.; Dai, S.; Zhang, J.; Liu, J.; et al. The Main Progress of Perovskite Solar Cells in 2020-2021. Nanomicro Lett. 2021, 13, 152. [Google Scholar] [CrossRef]
- Wu, X.; Ji, H.; Yan, X.; Zhong, H. Industry Outlook of Perovskite Quantum Dots for Display Applications. Nat. Nanotechnol. 2022, 17, 813–816. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, Y.; Li, Z.; Ji, Z.; Yan, G.; Zhao, C.; Mai, W. Achieving Dual-Color Imaging by Dual-Band Perovskite Photodetectors Coupled with Algorithms. J. Colloid Interface Sci. 2022, 625, 297–304. [Google Scholar] [CrossRef]
- Yang, G.; Fan, Q.; Chen, B.; Zhou, Q.; Zhong, H. Reprecipitation Synthesis of Luminescent CH3NH3PbBr3/NaNO3 Nanocomposites with Enhanced Stability. J. Mater. Chem. C 2016, 4, 11387–11391. [Google Scholar] [CrossRef]
- Yang, G.; Zhong, H. Organometal Halide Perovskite Quantum Dots: Synthesis, Optical properties, and Display applications. Chin. Chem. Lett. 2016, 27, 1124–1130. [Google Scholar] [CrossRef]
- Liu, X.; Li, J.; Zhang, P.; Lu, W.; Yang, G.; Zhong, H.; Zhao, Y. Perovskite Quantum Dot Microarrays: In Situ Fabrication via Direct Print Photopolymerization. Nano Res. 2022, 15, 7681–7687. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, G.; Li, F.; Shi, J.; Zhong, H. Direct in situ Photolithography of Perovskite Quantum Dots Based on Photocatalysis of Lead Bromide Complexes. Nat. Commun. 2022, 13, 6713. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, H.; Piotrowski, M.; Han, X.; Ge, Z.; Dong, L.; Wang, C.; Pinisetty, S.K.; Balguri, P.K.; Bandela, A.K.; et al. Cesium Lead Iodide Perovskites: Optically Active Crystal Phase Stability to Surface Engineering. Micromachines 2022, 13, 1318. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Song, J.; Xiao, L.; Zeng, H.; Sun, H. All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Adv. Mater. 2015, 27, 7101–7108. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Shang, Q.; Zhang, Q. Surface-Plasmon-Assisted Metal Halide Perovskite Small Lasers. Adv. Opt. Mater. 2019, 7, 1900279. [Google Scholar] [CrossRef]
- Mi, Y.; Zhong, Y.; Zhang, Q.; Liu, X. Continuous-Wave Pumped Perovskite Lasers. Adv. Opt. Mater. 2019, 7, 1900544. [Google Scholar] [CrossRef]
- Wang, K.; Wang, S.; Xiao, S.; Song, Q. Recent Advances in Perovskite Micro- and Nanolasers. Adv. Opt. Mater. 2018, 6, 1800278. [Google Scholar] [CrossRef]
- Liu, Z.; Li, C.; Shang, Q.Y.; Zhao, L.Y.; Zhong, Y.G.; Gao, Y.; Du, W.N.; Mi, Y.; Chen, J.; Zhang, S.; et al. Research Progress of Low-Dimensional Metal Halide Perovskites for Lasing Applications. Chin. Phys. B 2018, 27, 114209. [Google Scholar] [CrossRef]
- Chen, J.; Du, W.; Shi, J.; Li, M.; Wang, Y.; Zhang, Q.; Liu, X. Perovskite Quantum Dot Lasers. InfoMat 2020, 2, 170–183. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, R.; Du, W.; Liu, X.; Zhao, L.; Ha, S.T.; Xiong, Q. Advances in Small Perovskite-Based Lasers. Small Methods 2017, 1, 1700163. [Google Scholar] [CrossRef]
- Wang, L.; Meng, L.; Chen, L.; Huang, S.; Wu, X.; Dai, G.; Deng, L.; Han, J.; Zou, B.; Zhang, C.; et al. Ultralow-Threshold and Color-Tunable Continuous-Wave Lasing at Room-Temperature from In Situ Fabricated Perovskite Quantum Dots. J. Phys. Chem. Lett. 2019, 10, 3248–3253. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dai, G.; Deng, L.; Zhong, H. Progress in Semiconductor Quantum Dots-Based Continuous-Wave Laser. Sci. Chin. Mater. 2020, 63, 1382–1397. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, C.; Xiao, S.; Wang, Y.; Fan, Y.; Liu, Y.; Zhang, N.; Qu, G.; Ji, H.; Han, J.; et al. Ultrafast Control of Vortex Microlasers. Science 2020, 367, 1018–1021. [Google Scholar] [CrossRef]
- Zhao, W.; Qin, Z.; Zhang, C.; Wang, G.; Huang, X.; Li, B.; Dai, X.; Xiao, M. Optical Gain from Biexcitons in CsPbBr3 Nanocrystals Revealed by Two-dimensional Electronic Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shang, Q.; Du, W.; Shi, J.; Wu, Z.; Mi, Y.; Chen, J.; Liu, F.; Li, Y.; Liu, M.; et al. Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Micro/Nanowires. Adv. Opt. Mater. 2018, 6, 1701032. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H. Advances and Prospects of Lasers Developed from Colloidal Semiconductor Nanostructures. Prog. Quant. Electron. 2018, 60, 1–29. [Google Scholar] [CrossRef]
- Pushkarev, A.; Korolev, V.; Markina, D.; Komissarenko, F.; Naujokaitis, A.; Drabavicius, A.; Pakstas, V.; Franckevicius, M.; Khubezhov, S.; Sannikov, D.; et al. A Few-Minute Synthesis of CsPbBr3 Nanolasers with a High Quality Factor by Spraying at Ambient Conditions. ACS Appl. Mater. Interface 2018, 11, 1040–1048. [Google Scholar] [CrossRef]
- Nagamine, G.; Rocha, J.O.; Bonato, L.G.; Nogueira, A.F.; Zaharieva, Z.; Watt, A.A.R.; de Brito Cruz, C.H.; Padilha, L.A. Two-Photon Absorption and Two-Photon-Induced Gain in Perovskite Quantum Dots. J. Phys. Chem. Lett. 2018, 9, 3478–3484. [Google Scholar] [CrossRef]
- Mathies, F.; Brenner, P.; Hernandez-Sosa, G.; Howard, I.A.; Paetzold, U.W.; Lemmer, U. Inkjet-Printed Perovskite Distributed Feedback Lasers. Opt. Express 2018, 26, 144–152. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Lim, S.S.; Yantara, N.; Liu, X.; Sabba, D.; Gratzel, M.; Mhaisalkar, S.; Sum, T.C. Low-Temperature Solution-Processed Wavelength-Tunable Perovskites for Lasing. Nat. Mater. 2014, 13, 476–480. [Google Scholar] [CrossRef]
- Dang, C.; Lee, J.; Breen, C.; Steckel, J.S.; Coe-Sullivan, S.; Nurmikko, A. Red, Green and Blue Lasing Enabled by Single-Exciton Gain in Colloidal Quantum Dot Films. Nat. Nanotechnol. 2012, 7, 335–339. [Google Scholar] [CrossRef]
- Deschler, F.; Price, M.; Pathak, S.; Klintberg, L.E.; Jarausch, D.D.; Higler, R.; Huttner, S.; Leijtens, T.; Stranks, S.D.; Snaith, H.J.; et al. High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. J. Phys. Chem. Lett. 2014, 5, 1421–1426. [Google Scholar] [CrossRef]
- Dhanker, R.; Brigeman, A.N.; Larsen, A.V.; Stewart, R.J.; Asbury, J.B.; Giebink, N.C. Random Lasing in Organo-Lead Halide Perovskite Microcrystal Networks. Appl. Phys. Lett. 2014, 105, 151112. [Google Scholar] [CrossRef]
- Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M.I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M.V. Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nat. Commun. 2015, 6, 8056. [Google Scholar] [CrossRef]
- Liu, S.; Sun, W.; Li, J.; Gu, Z.; Wang, K.; Xiao, S.; Song, Q. Random Lasing Actions in Self-Assembled Perovskite Nanoparticles. Opt. Eng. 2016, 55, 057102. [Google Scholar] [CrossRef]
- Hu, H.W.; Haider, G.; Liao, Y.M.; Roy, P.K.; Ravindranath, R.; Chang, H.T.; Lu, C.H.; Tseng, C.Y.; Lin, T.Y.; Shih, W.H.; et al. Wrinkled 2D Materials: A Versatile Platform for Low-Threshold Stretchable Random Lasers. Adv. Mater. 2017, 29, 1703549. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chen, D.; Li, X.; Zhong, J.; Xu, X. In Situ Crystallization Synthesis of CsPbBr3 Perovskite Quantum Dot-Embedded Glasses with Improved Stability for Solid-State Lighting and Random Upconverted Lasing. ACS Appl. Mater. Interfaces 2018, 10, 18918–18926. [Google Scholar] [CrossRef]
- Roy, P.K.; Haider, G.; Lin, H.I.; Liao, Y.M.; Lu, C.H.; Chen, K.H.; Chen, L.C.; Shih, W.H.; Liang, C.T.; Chen, Y.F. Multicolor Ultralow-Threshold Random Laser Assisted by Vertical-Graphene Network. Adv. Opt. Mater. 2018, 6, 1800382. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, Z.; Shi, T.; Du, J.; Yang, J.; Zhang, Z.; Tang, X.; Leng, Y. Stable and Enhanced Frequency Up-Converted Lasing from CsPbBr3 Quantum Dots Embedded in Silica Sphere. Opt. Express 2019, 27, 9459–9466. [Google Scholar] [CrossRef]
- Tang, X.; Bian, Y.; Liu, Z.; Du, J.; Li, M.; Hu, Z.; Yang, J.; Chen, W.; Sun, L. Room-Temperature Up-Conversion Random Lasing from CsPbBr3 Quantum Dots with TiO2 Nanotubes. Opt. Lett. 2019, 44, 4706–4709. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Pi, M.; Lin, H.; Zeng, F.; Bian, Y.; Shi, T.; Du, J.; Leng, Y.; Tang, X. High Efficiency Up-Conversion Random Lasing from Formamidinium Lead Bromide/Amino-Mediated Silica Spheres Composites. Adv. Opt. Mater. 2020, 8, 2000290. [Google Scholar] [CrossRef]
- Zhu, Y.; Mu, Y.; Tang, F.; Du, P.; Ren, H. A Corona Modulation Device Structure and Mechanism Based on Perovskite Quantum Dots Random Laser Pumped Using an Electron Beam. Front. Optoelectron. 2020, 13, 291–302. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, X.; Gao, Z.; Hou, Y.; Wang, K.; Zhang, W.; Wang, Z.; Wang, X.; Xu, B.; Meng, X. Zero-Dimensional Perovskite Open Cavities for Low-Threshold Stimulated Emissions. J. Phys. Chem. C 2020, 124, 25499–25508. [Google Scholar] [CrossRef]
- Yang, L.; Wang, T.; Min, Q.; Pi, C.; Li, F.; Yang, X.; Li, K.; Zhou, D.; Qiu, J.; Yu, X.; et al. Ultrahigh Photo-Stable All-Inorganic Perovskite Nanocrystals and Their Robust Random Lasing. Nanoscale Adv. 2020, 2, 888–895. [Google Scholar] [CrossRef]
- Li, R.; Yu, J.; Wang, S.; Shi, Y.; Wang, Z.; Wang, K.; Ni, Z.; Yang, X.; Wei, Z.; Chen, R. Surface Modification of All-Inorganic Halide Perovskite Nanorods by a Microscale Hydrophobic Zeolite for Stable and Sensitive Laser Humidity Sensing. Nanoscale 2020, 12, 13360–13367. [Google Scholar] [CrossRef]
- Li, S.; Lei, D.; Ren, W.; Guo, X.; Wu, S.; Zhu, Y.; Rogach, A.L.; Chhowalla, M.; Jen, A.K. Water-Resistant Perovskite Nanodots Enable Robust Two-Photon Lasing in Aqueous Environment. Nat. Commun. 2020, 11, 1192. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhou, Z.; Zhang, C.; Tang, J.; Fan, Y.; Xu, F.F.; Zhao, Y.S. Full-Color Flexible Laser Displays Based on Random Laser Arrays. Sci. Chin. Mater. 2021, 64, 2805–2812. [Google Scholar] [CrossRef]
- Xu, B.; Gao, Z.; Yang, S.; Sun, H.; Song, L.; Li, Y.; Zhang, W.; Sun, X.; Wang, Z.; Wang, X.; et al. Multicolor Random Lasers Based on Perovskite Quantum Dots Embedded in Intrinsic Pb–MOFs. J. Phys. Chem. C 2021, 125, 25757–25764. [Google Scholar] [CrossRef]
- Xing, D.; Lin, C.C.; Won, P.; Xiang, R.; Chen, T.P.; Kamal, A.S.A.; Lee, Y.C.; Ho, Y.L.; Maruyama, S.; Ko, S.H.; et al. Metallic Nanowire Coupled CsPbBr3 Quantum Dots Plasmonic Nanolaser. Adv. Funct. Mater. 2021, 31, 2102375. [Google Scholar] [CrossRef]
- Gao, W.; Wang, T.; Xu, J.; Zeng, P.; Zhang, W.; Yao, Y.; Chen, C.; Li, M.; Yu, S.F. Robust and Flexible Random Lasers Using Perovskite Quantum Dots Coated Nickel Foam for Speckle-Free Laser Imaging. Small 2021, 17, 2103065. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Gao, W.; Liang, X.; Fang, Y.; Yu, S.; Wang, T.; Xiang, W. The Achievement of Red Upconversion Lasing for Highly Stable Perovskite Nanocrystal Glasses with The Assistance of Anion Modulation. Nano Res. 2021, 14, 2861–2866. [Google Scholar] [CrossRef]
- Xiong, Q.; Huang, S.; Zhan, Z.; Du, J.; Tang, X.; Hu, Z.; Liu, Z.; Zhang, Z.; Chen, W.; Leng, Y. Surface Ligand Modified Cesium Lead Bromide/Silica Sphere Composites for Low-Threshold Upconversion Lasing. Photon. Res. 2022, 10, 628–636. [Google Scholar] [CrossRef]
- Kao, T.S.; Chou, Y.H.; Hong, K.B.; Huang, J.F.; Chou, C.H.; Kuo, H.C.; Chen, F.C.; Lu, T.C. Controllable Lasing Performance in Solution-Processed Organic-Inorganic Hybrid Perovskites. Nanoscale 2016, 8, 18483–18488. [Google Scholar] [CrossRef]
- Xu, L.; Meng, Y.; Xu, C.; Chen, P. Room Temperature Two-Photon-Pumped Random Lasers in FAPbBr3/Polyethylene Oxide (PEO) Composite Perovskite Thin Film. RSC Adv. 2018, 8, 36910–36914. [Google Scholar] [CrossRef]
- Weng, G.; Xue, J.; Tian, J.; Hu, X.; Bao, X.; Lin, H.; Chen, S.; Zhu, Z.; Chu, J. Picosecond Random Lasing Based on Three-Photon Absorption in Organometallic Halide CH3NH3PbBr3 Perovskite Thin Films. ACS Photon. 2018, 5, 2951–2959. [Google Scholar] [CrossRef]
- Safdar, A.; Wang, Y.; Krauss, T.F. Random Lasing in Uniform Perovskite Thin Films. Opt. Express 2018, 26, 75–84. [Google Scholar] [CrossRef]
- Wang, Y.C.; Li, H.; Hong, Y.H.; Hong, K.B.; Chen, F.C.; Hsu, C.H.; Lee, R.K.; Conti, C.; Kao, T.S.; Lu, T.-C. Flexible Organometal–Halide Perovskite Lasers for Speckle Reduction in Imaging Projection. ACS Nano 2019, 13, 5421–5429. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Xiao, S.; Zhang, N.; Fan, Y.; Qu, G.; Song, Q. Surface-Emitting Perovskite Random Lasers for Speckle-Free Imaging. ACS Nano 2019, 13, 10653–10661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yan, S.; Tong, J.; Shi, X.; Zhang, S.; Chen, C.; Xiao, Y.; Han, C.; Zhai, T. Perovskite Random Lasers on Fiber Facet. Nanophotonics 2020, 9, 935–941. [Google Scholar] [CrossRef]
- Mallick, S.P.; Sung, Z. Holographic Image Denoising using Random Laser Illumination. Ann. Phys. 2020, 532, 2000323. [Google Scholar] [CrossRef]
- Hong, Y.H.; Kao, T.S. Room-Temperature Random Lasing of Metal-Halide Perovskites via Morphology-Controlled Synthesis. Nanoscale Adv. 2020, 2, 5833–5840. [Google Scholar] [CrossRef]
- Mallick, S.P.; Hong, Y.H.; Chen, L.R.; Kao, T.S.; Lu, T.C. Effect of Passivation Layer on the Thin Film Perovskite Random Lasers. Materials 2020, 13, 2322. [Google Scholar] [CrossRef]
- Bouteyre, P.; Son Nguyen, H.; Lauret, J.S.; Trippe-Allard, G.; Delport, G.; Ledee, F.; Diab, H.; Belarouci, A.; Seassal, C.; Garrot, D.; et al. Directing Random Lasing Emission using Cavity Exciton-Polaritons. Opt. Express 2020, 28, 39739–39749. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Chen, Y.Y.; Lin, L.J.; Hsu, H.C. Room-Temperature Near-Infrared Random Lasing with Tin-Based Perovskites Prepared by CVD Processing. J. Phys. Chem. C 2021, 125, 5180–5184. [Google Scholar] [CrossRef]
- Suárez, I.; Chirvony, V.S.; Sánchez-Díaz, J.; Sánchez, R.S.; Mora-Seró, I.; Martínez-Pastor, J.P. Directional and Polarized Lasing Action on Pb-free FASnI3 Integrated in Flexible Optical Waveguides. Adv. Opt. Mater. 2022, 10, 2200458. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X. Substrate Effects on the Random Lasing Performance of Solution-Processed Hybrid-Perovskite Multicrystal Film. Crystals 2022, 12, 334. [Google Scholar] [CrossRef]
- Tang, X.; Hu, Z.; Chen, W.; Xing, X.; Zang, Z.; Hu, W.; Qiu, J.; Du, J.; Leng, Y.; Jiang, X.; et al. Room Temperature Single-Photon Emission and Lasing for All-Inorganic Colloidal Perovskite Quantum Dots. Nano Energy 2016, 28, 462–468. [Google Scholar] [CrossRef]
- Piotrowski, M.; Ge, Z.; Wang, Y.; Bandela, A.K.; Thumu, U. Programmable Precise Kinetic Control over Crystal Phase, Size, and Equilibrium in Spontaneous Metathesis Reaction for Cs-Pb-Br Nanostructure Patterns at Room Temperature. Nanoscale 2022. [Google Scholar] [CrossRef] [PubMed]
- Kao, T.S.; Chou, Y.H.; Chou, C.H.; Chen, F.C.; Lu, T.C. Lasing Behaviors Upon Phase Transition in Solution-Processed Perovskite Thin Films. Appl. Phys. Lett. 2014, 105, 231108. [Google Scholar] [CrossRef]
- Weng, G.; Tian, J.; Chen, S.; Xue, J.; Yan, J.; Hu, X.; Chen, S.; Zhu, Z.; Chu, J. Giant Reduction of The Random Lasing Threshold in CH3NH3PbBr3 Perovskite Thin Films by Using a Patterned Sapphire Substrate. Nanoscale 2019, 11, 10636–10645. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zang, Z.; Han, C.; Hu, Z.; Tang, X.; Du, J.; Leng, Y.; Sun, K. Highly compact CsPbBr3 Perovskite Thin Films Decorated by ZnO Nanoparticles for Enhanced Random Lasing. Nano Energy 2017, 40, 195–202. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, S.; Yi, N.; Gu, Z.; Gao, Y.; Song, Q.; Xiao, S. Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films. ACS Appl. Mater. Interfaces 2017, 9, 20711–20718. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.K.; Ulaganathan, R.K.; Raghavan, C.M.; Mhatre, S.M.; Lin, H.I.; Chen, W.L.; Chang, Y.M.; Rozhin, A.; Hsu, Y.T.; Chen, Y.F.; et al. Unprecedented Random Lasing in 2D Organolead Halide Single-Crystalline Perovskite Microrods. Nanoscale 2020, 12, 18269–18277. [Google Scholar] [CrossRef]
- Murzin, A.O.; Stroganov, B.V.; Günnemann, C.; Hammouda, S.B.; Shurukhina, A.V.; Lozhkin, M.S.; Emeline, A.V.; Kapitonov, Y.V. Amplified Spontaneous Emission and Random Lasing in MAPbBr3 Halide Perovskite Single Crystals. Adv. Opt. Mater. 2020, 8, 2000690. [Google Scholar] [CrossRef]
- Li, Z.; Moon, J.; Gharajeh, A.; Haroldson, R.; Hawkins, R.; Hu, W.; Zakhidov, A.A.; Gu, Q. Room-Temperature Continuous-Wave Operation of Organometal Halide Perovskite Lasers. ACS Nano 2018, 12, 10968–10976. [Google Scholar] [CrossRef]
- Evans, T.J.S.; Schlaus, A.; Fu, Y.; Zhong, X.; Atallah, T.L.; Spencer, M.S.; Brus, L.E.; Jin, S.; Zhu, X.Y. Continuous-Wave Lasing in Cesium Lead Bromide Perovskite Nanowires. Adv. Opt. Mater. 2018, 6, 1700982. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, R.; Su, R.; Yu, Y.; Xu, H.; Wei, Y.; Zhou, Z.K.; Wang, X. Continuous Wave Pumped Single-Mode Nanolasers in Inorganic Perovskites with Robust Stability and High Quantum Yield. Nanoscale 2018, 10, 13565–13571. [Google Scholar] [CrossRef] [PubMed]
- Brenner, P.; Bar-On, O.; Jakoby, M.; Allegro, I.; Richards, B.S.; Paetzold, U.W.; Howard, I.A.; Scheuer, J.; Lemmer, U. Continuous Wave Amplified Spontaneous Emission in Phase-Stable Lead Halide Perovskites. Nat. Commun. 2019, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Pelton, M.; Fedin, I.; Talapin, D.V.; Waks, E. A Room Temperature Continuous-Wave Nanolaser using Colloidal Quantum Wells. Nat. Commun. 2017, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Grim, J.Q.; Christodoulou, S.; Di Stasio, F.; Krahne, R.; Cingolani, R.; Manna, L.; Moreels, I. Continuous-Wave Biexciton Lasing at Room Temperature using Solution-Processed Quantum Wells. Nat. Nanotechnol. 2014, 9, 891–895. [Google Scholar] [CrossRef]
- Wu, K.; Park, Y.S.; Lim, J.; Klimov, V.I. Towards Zero-Threshold Optical Gain using Charged Semiconductor Quantum Dots. Nat. Nanotechnol. 2017, 12, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Voznyy, O.; Sabatini, R.P.; Bicanic, K.T.; Adachi, M.M.; McBride, J.R.; Reid, K.R.; Park, Y.S.; Li, X.; Jain, A.; et al. Continuous-Wave Lasing in Colloidal Quantum Dot Solids Enabled by Facet-Selective Epitaxy. Nature 2017, 544, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Kerner, R.A.; Grede, A.J.; Rand, B.P.; Giebink, N.C. Continuous-Wave Lasing in an Organic–Inorganic Lead Halide Perovskite Semiconductor. Nat. Photon. 2017, 11, 784–788. [Google Scholar] [CrossRef]
- Sutherland, B.R.; Hoogland, S.; Adachi, M.M.; Wong, C.T.; Sargent, E.H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano 2014, 8, 10947–10952. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, B.R.; Hoogland, S.; Adachi, M.M.; Kanjanaboos, P.; Wong, C.T.O.; McDowell, J.J.; Xu, J.; Voznyy, O.; Ning, Z.; Houtepen, A.J.; et al. Perovskite Thin Films via Atomic Layer Deposition. Adv. Mater 2015, 27, 53–58. [Google Scholar] [CrossRef] [PubMed]
Authors | Description | Pump Type | Pump Wavelength | Emission Wavelength | Thresholds | FWHM | Operation Condition | Publication Date (Year) |
---|---|---|---|---|---|---|---|---|
Perovskite QD RLs | ||||||||
Yakunin et al. [61] | CsPbBr3 QDs | fs | 400 nm | ~483 nm | ~5 μJ/cm2 | 0.14 nm | RT | 2015 |
Liu et al. [62] | MAPbBr3 QDs | fs | 400 nm/800 nm | ~548 nm | 60 μJ/cm2/4.4 mJ/cm2 | 1 nm | RT | 2016 |
Hu et al. [63] | MAPbBr3 QDs | ps | 374 nm | 540 nm | ~34.5 μJ/cm2 | 0.4 nm | RT | 2017 |
Yuan et al. [64] | CsPbBr3 QD-embedded glass | fs | 800 nm | 530–540 nm | 200 μJ/cm2 | <1 nm | 77 K | 2018 |
Roy et al. [65] | MAPbBr3 QDs/GNW composite | ps | 374 nm | 530 nm | 1 nJ/cm2 | 0.4 nm | RT | 2018 |
Liu et al. [66] | CsPbBr3-SiO2 sphere | fs | 800 nm | 537 nm | 665 μJ/cm2 | <1 nm | RT | 2019 |
Tang et al. [67] | CsPbBr3 QDs | fs | 800 nm | 540 nm | 9.54 mJ/cm2 | 0.49 nm | RT | 2019 |
Yang et al. [68] | FAPbBr3/A-SiO2 composites | fs | 800 nm | ~550 nm | 413.9 μJ/cm2 | ~1307 | RT | 2020 |
Zhu et al. [69] | CsPbBr3 QDs | electron beam | - | ~540 nm | 3kV | 0.9 nm | RT | 2020 |
Liu et al. [70] | Cs4PbBr6 monolith ceramics | fs | 400 nm/800 nm | ~541 nm | 25.98 μJ/cm2 719 μJ/cm2 | <1 nm | RT | 2020 |
Yang et al. [71] | CsPbBr3 QDs | fs | 800 nm | 535 nm | 254 μJ/cm2 | 0.3 nm | 77 K | 2020 |
Li et al. [72] | CsPbBr3 nanorods | fs | 355 nm | 532 nm | 18.8 μJ/cm2 | 0.2 nm | RT | 2020 |
Li et al. [73] | CsPbBr3 QD/SiO2 nanodots | fs | 800 nm | 533 nm | 0.91 mJ/cm2 | 0.3 nm | RT | 2020 |
Hou et al. [74] | CsPbX3 QD/SiO2 composites | fs | 400 nm | RGB | 52.1–72.3 μJ/cm2 | - | RT | 2021 |
Xu et al. [75] | MAPbX3 QDs@Pb-MOFs | ps | 490 nm | Multicolar 520–780 nm | 0.38 mJ/cm2 | 1.2 nm | RT | 2021 |
Wang et al. [22] | CsPbX3@glass@ SEBS | fs | 800 nm | ~523 nm | 0.16 mJ/cm2 | - | RT | 2021 |
Xing et al. [76] | Ag NW coupled CsPbBr3 QDs | fs | 400 nm | ~520 nm | ~34.5 μJ/cm2 | ~2.5 nm | RT | 2021 |
Gao et al. [77] | CsPbBr3 QDs | fs | 800 nm | 537 nm | 190 μJ/cm2 | 1 nm | RT | 2021 |
Jin et al. [78] | CsPb(Br/I)3 QD glasses | fs | 800 nm | 590 nm | 0.79 mJ/cm2 | 3 nm | 93 K | 2021 |
Xiong et al. [79] | CsPbBr3 QD/SiO2 composites | fs | 800 nm | 527 nm | 79.81 μJ/cm2 | 0.4 nm | RT | 2022 |
Perovskite film RLs | ||||||||
Dhanker et al. [60] | MAPbI3 planar microcrystal networks | ns | 355 nm | ~785 nm | 200 μJ/cm2 | <0.5 nm | RT | 2014 |
Kao et al. [80] | MAPbI3 film | ns | 355 nm | ~745 nm | ~230 μJ/cm2 | - | 77 K | 2016 |
Xu et al. [81] | FAPbBr3/PEOcomposite film | ns | 1064 nm | 538 nm | 1.1 mJ/cm2 | 0.4 nm | RT | 2018 |
Weng et al. [82] | MAPbBr3 film | fs | 1300 nm | ~547 nm | 27 mJ/cm2 | 5 nm | RT | 2018 |
Safdar et al. [83] | MAPbI3 films | ns | 532 nm | 780 nm | 10 μJ/cm2 | 5 nm | RT | 2018 |
Wang et al. [84] | MAPbBr3 film | ns | 355 nm | ~546 nm | 2.5 mJ/cm2 | 1.8 nm | RT | 2019 |
Liu et al. [85] | MAPbBr3 film | ps | 400 nm | 540–560 nm | ~25 μJ/cm2 | <1 nm | RT | 2019 |
Zhang et al. [86] | MAPbBr3 film on fiber facet | fs | 400 nm | 552 nm | 32.3 μJ/cm2 | 4 nm | RT | 2020 |
Mallick et al. [87] | MAPbBr3 film | ns | 355 nm | ~550 nm | ~6.6 mJ/cm2 | <1 nm | RT | 2020 |
Hong et al. [88] | MAPbBr3 films | ns | 355 nm | ~550 nm | 0.9 mJ cm2 | <1 nm | RT | 2020 |
Mallick et al. [89] | MAPbBr3 films | ns | 355 nm | 546 nm | 2.6 mJ/cm2 | ~3 nm | RT | 2020 |
Bouteyre et al. [90] | MAPbBr3 film | fs | 405 nm | 545 nm | 104 μW | 0.7 nm | RT | 2020 |
Wu et al. [91] | γ-CsSnI3 films | ps | 355 nm | 950–960 nm | 18 mJ/cm2 | 0.3 nm | RT | 2021 |
Suárez et al. [92] | FASnI3 films | ns | 532 nm | 890 nm | 300 nJ/cm2 | 0.8 nm | RT | 2022 |
Hu et al. [93] | MAPbBr3 films | fs | 400 nm | ~550 nm | 12.3 μJ/cm2 | 7.7 nm | RT | 2022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yang, M.; Zhang, S.; Niu, C.; Lv, Y. Perovskite Random Lasers, Process and Prospects. Micromachines 2022, 13, 2040. https://doi.org/10.3390/mi13122040
Wang L, Yang M, Zhang S, Niu C, Lv Y. Perovskite Random Lasers, Process and Prospects. Micromachines. 2022; 13(12):2040. https://doi.org/10.3390/mi13122040
Chicago/Turabian StyleWang, Lei, Mingqing Yang, Shiyu Zhang, Chunhui Niu, and Yong Lv. 2022. "Perovskite Random Lasers, Process and Prospects" Micromachines 13, no. 12: 2040. https://doi.org/10.3390/mi13122040
APA StyleWang, L., Yang, M., Zhang, S., Niu, C., & Lv, Y. (2022). Perovskite Random Lasers, Process and Prospects. Micromachines, 13(12), 2040. https://doi.org/10.3390/mi13122040