Biomedical Application of Photoacoustics: A Plethora of Opportunities
Abstract
:1. Introduction
2. About PA Technique
2.1. PA Wave Generation and Propagation
- The sample should absorb the irradiated energy in terms of light or electromagnetic waves
- The energy should be in modulated form
- Thermal relaxation time is basically estimated by the thermal diffusion shown in Equation (1).
- The stress relaxation time is associated with pressure propagation, i.e., the laser pulse duration should be less compared to the time taken for release of stress from the heated regime. This is expressed as
Laser Safety Standard
2.2. PA Signal Detection
Ultrasound Sensors
2.3. Characteristics of Time Domain PA Signal
2.4. PA Image Reconstruction
2.4.1. PA Signal Pre-Processing
2.4.2. Image Reconstruction Algorithm
3. Types of PA Technique
3.1. PA Imaging
3.1.1. Photoacoustic Tomography (PAT)
3.1.2. Photoacoustic Microscopy (PAM)
3.2. PA Spectroscopy
3.3. PA Signal Analysis
3.3.1. Frequency Spectrum Analysis
3.3.2. Cepstral Analysis
3.3.3. Envelope Statistics
4. Biomedical Application of PA Technique
4.1. PA Imaging Applications
4.1.1. Brain Imaging
4.1.2. Arthritis Detection
4.1.3. Arterial Plaque Detection
4.1.4. Haematological Diseases
4.1.5. Cancer Diagnosis
4.2. PA Signal Analysis Applications
4.2.1. Tumor Diagnosis
4.2.2. Single Cell Characterization
4.2.3. Miscellaneous Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beard, P. Biomedical Photoacoustic Imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, Y. Comparison of Various Imaging Modes for Photoacoustic Tomography. IFMBE Proc. 2009, 23, 121–124. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.I. Biomedical Optics: Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Valluru, K.S.; Chinni, B.K.; Rao, N.A.; Bhatt, S.; Dogra, V.S. Basics and Clinical Applications of Photoacoustic Imaging. Ultrasound Clin. 2009, 4, 403–429. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Universal Back-Projection Algorithm for Photoacoustic Computed Tomography. Phys. Rev. E—Stat. Nonlinear Soft Matter. Phys. 2005, 71, 016706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haltmeier, M.; Scherzer, O.; Zangerl, G. A Reconstruction Algorithm for Photoacoustic Imaging Based on the Nonuniform FFT. IEEE Trans. Med. Imaging 2009, 28, 1727–1735. [Google Scholar] [CrossRef] [Green Version]
- Treeby, B.E.; Cox, B.T. K-Wave: MATLAB Toolbox for the Simulation and Reconstruction of Photoacoustic Wave Fields. J. Biomed. Opt. 2010, 15, 021314. [Google Scholar] [CrossRef] [Green Version]
- Strohm, E.M.; Berndl, E.S.L.; Kolios, M.C. High Frequency Label-Free Photoacoustic Microscopy of Single Cells. Photoacoustics 2013, 1, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Strohm, E.M.; Moore, M.J.; Kolios, M.C. Single Cell Photoacoustic Microscopy: A Review. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 137–151. [Google Scholar] [CrossRef]
- Biswas, D.; Vasudevan, S.; Chen, G.C.K.; Sharma, N. Quantitative Photoacoustic Characterization of Blood Clot in Blood: A Mechanobiological Assessment through Spectral Information. Rev. Sci. Instrum. 2017, 88, 024301. [Google Scholar] [CrossRef]
- Kamath, S.D.; Kartha, V.B.; Mahato, K.K. Dynamics of L-Tryptophan in Aqueous Solution by Simultaneous Laser Induced Fluorescence (LIF) and Photoacoustic Spectroscopy (PAS). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 70, 187–194. [Google Scholar] [CrossRef]
- Muller, J.-W.; van Hees, R.; van Sambeek, M.; Boutouyrie, P.; Rutten, M.; Brands, P.; Wu, M.; Lopata, R. Towards in Vivo Photoacoustic Imaging of Vulnerable Plaques in the Carotid Artery. Biomed. Opt. Express 2021, 12, 4207. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Zhang, Z.; Zhu, A.; Xu, X.; Pan, J.; Liu, Y.; Wu, D.; Huang, S.; Cheng, Q. Prostate Cancer Identification via Photoacoustic Spectroscopy and Machine Learning. Photoacoustics 2021, 23, 100280. [Google Scholar] [CrossRef]
- Xie, W.; Feng, T.; Zhang, M.; Li, J.; Ta, D.; Cheng, L.; Cheng, Q. Wavelet Transform-Based Photoacoustic Time-Frequency Spectral Analysis for Bone Assessment. Photoacoustics 2021, 22, 100259. [Google Scholar] [CrossRef]
- Gorey, A.; Biswas, D.; Kumari, A.; Gupta, S.; Sharma, N.; Chen, G.C.K.; Vasudevan, S. Application of Continuous-Wave Photoacoustic Sensing to Red Blood Cell Morphology. Lasers Med. Sci. 2019, 34, 487–494. [Google Scholar] [CrossRef]
- Bell, A.G. On the Production and Reproduction of Sound by Light. J. Soc. Telegr. Eng. 1880, 9, 404–426. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Yao, J.; Wang, L.V. Photoacoustic tomography: Principles and advances. Prog. Electromagn. Res. 2014, 147, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Diebold, G.J.; Sun, T.; Khan, M.I. Photoacoustic Monopole Radiation in One, Two, and Three Dimensions. Phys. Rev. Lett. 1991, 67, 3384–3387. [Google Scholar] [CrossRef]
- Diebold, G.J.; Sun, T. Properties of Photoacoustic Waves in One, Two, and Three Dimension. Acta Acust. United Acust. 1994, 80, 339–351. [Google Scholar]
- Treeby, B.E.; Cox, B.T. Fast Tissue-Realistic Models of Photoacoustic Wave Propagation for Homogeneous Attenuating Media. Photons Plus Ultrasound Imaging Sens. 2009, 7177, 311–320. [Google Scholar] [CrossRef]
- Treeby, B.E. Acoustic Attenuation Compensation in Photoacoustic Tomography Using Time-Variant Filtering. J. Biomed. Opt. 2013, 18, 036008. [Google Scholar] [CrossRef] [Green Version]
- Marion, A.; Boutet, J.; Debourdeau, M.; Dinten, J.M.; Vray, D. A Quantitative Study to Design an Experimental Setup for Photoacoustic Imaging. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 2011, 7211–7214. [Google Scholar] [CrossRef] [PubMed]
- Guittet, C.; Ossant, F.; Vaillant, L.; Berson, M. In Vivo High-Frequency Ultrasonic Characterization of Human Dermis. IEEE Trans. Biomed. Eng. 1999, 46, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, L.V. Photoacoustic Tomography and Sensing in Biomedicine. Phys. Med. Biol. 2009, 54, R59. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xiang, L. Scanning Photoacoustic Tomography of Biological Tissues with a Piezoelectricity Double-Ring Sensor. Key Eng. Mater. 2008, 364–366, 1105–1110. [Google Scholar] [CrossRef]
- Tichý, J.; Erhart, J.; Kittinger, E.; Přívratská, J. Fundamentals of Piezoelectric Sensorics: Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; pp. 1–207. [Google Scholar] [CrossRef]
- Wissmeyer, G.; Pleitez, M.A.; Rosenthal, A.; Ntziachristos, V. Looking at sound: Optoacoustics with all-optical ultrasound detection. Light Sci. Appl. 2018, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Biswas, D.; Heo, J.; Sang, P.; Dey, P.; Han, K.; Ko, J.H.; Won, S.M.; Son, D.; Suh, M.; Kim, H.S.; et al. Micro-ultrasonic Assessment of Early Stage Clot Formation and Whole Blood Coagulation Using an All-Optical Ultrasound Transducer and Adaptive Signal Processing Algorithm. ACS Sens. 2022; in press. [Google Scholar] [CrossRef]
- Hoelen, C.G.A.; de Mul, F.F.M. A New Theoretical Approach to Photoacoustic Signal Generation. J. Acoust. Soc. Am. 1999, 106, 695. [Google Scholar] [CrossRef]
- Biswas, D.; Gorey, A.; Chen, G.C.K.; Sharma, N.; Vasudevan, S. Investigation of Diseases through Red Blood Cells’ Shape Using Photoacoustic Response Technique. Dyn. Fluct. Biomed. Photonics XII 2015, 9322, 50–54. [Google Scholar] [CrossRef]
- Dekker, A.; Hoelen, C.G.A.; de Mul, F.F.M.; Pongers, R. Three-Dimensional Photoacoustic Imaging of Blood Vessels in Tissue. Opt. Lett. 1998, 23, 648–650. [Google Scholar] [CrossRef]
- Heijblom, M.; Steenbergen, W.; Manohar, S. Clinical Photoacoustic Breast Imaging: The Twente Experience. IEEE Pulse 2015, 6, 42–46. [Google Scholar] [CrossRef]
- Holan, S.H.; Viator, J.A. Automated Wavelet Denoising of Photoacoustic Signals for Circulating Melanoma Cell Detection and Burn Image Reconstruction. Phys. Med. Biol. 2008, 53, N227. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, G.; Xiong, Z. Photoacoustic Signals Denoising of the Glucose Aqueous Solutions Using an Improved Wavelet Threshold Method. Adv. Laser Manuf. Technol. 2016, 10153, 63–71. [Google Scholar] [CrossRef]
- Telenkov, S.A.; Alwi, R.; Mandelis, A. Photoacoustic Correlation Signal-to-Noise Ratio Enhancement by Coherent Averaging and Optical Waveform Optimization. Rev. Sci. Instrum. 2013, 84, 104907. [Google Scholar] [CrossRef] [Green Version]
- Moock, V.; García-Segundo, C.; Garduño, E.; Cosio, F.A.; Jithin, J.; van Es, P.; Manohar, S.; Steenbergen, W. Signal Processing for Photoacoustic Tomography. In Proceedings of the 2012 5th International Congress on Image and Signal Processing, CISP 2012, Chongqing, China, 16–18 October 2012; pp. 957–961. [Google Scholar] [CrossRef]
- Yao, J.; Wang, L.V. Sensitivity of Photoacoustic Microscopy. Photoacoustics 2014, 2, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Chmelka, L.; Kozumplík, J. Wavelet-Based Wiener Filter for Electrocardiogram Signal Denoising. Comput. Cardiol. 2005, 32, 771–774. [Google Scholar] [CrossRef]
- Wiltschko, A.B.; Gage, G.J.; Berke, J.D. Wavelet Filtering before Spike Detection Preserves Waveform Shape and Enhances Single-Unit Discrimination. J. Neurosci. Methods 2008, 173, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Xing, D.; Gu, H.; Yang, D.; Yang, S.; Xiang, L. High Antinoise Photoacoustic Tomography Based on a Modified Filtered Backprojection Algorithm with Combination Wavelet. Med. Phys. 2007, 34, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Oraevsky, A.A.; Esenaliev, R.O.; Karabutov, A.A. Laser Optoacoustic Tomography of Layered Tissues: Signal Processing. Opt. Tomogr. Spectrosc. Tissue: Theory Instrum. Model Hum. Stud. II 1997, 2979, 59–70. [Google Scholar] [CrossRef]
- Gamelin, J.K.; Aquirre, A.; Maurudis, A.; Huang, F.; Castillo, D.; Wang, L.V.; Zhu, Q. Curved Array Photoacoustic Tomographic System for Small Animal Imaging. J. Biomed. Opt. 2008, 13, 024007. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Photoacoustic Imaging in Biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef] [Green Version]
- Razansky, D.; Manohar, S. Photoacoustics: A Historical Review. Adv. Opt. Photonics 2016, 8, 586–617. [Google Scholar] [CrossRef] [Green Version]
- Herman, G.T. Fundamentals of Computerized Tomography; Springer Nature: Cham, Switzerland, 2009. [Google Scholar] [CrossRef]
- Van Metter, R.L.; Beutel, J.; Kundel, H.L. Handbook of Medical Imaging, Volume 1. Physics and Psychophysics; SPIE: Washington, DC, USA, 2010. [Google Scholar] [CrossRef]
- Treeby, B.E.; Zhang, E.Z.; Cox, B.T. Photoacoustic Tomography in Absorbing Acoustic Media Using Time Reversal. Inverse Probl. 2010, 26, 115003. [Google Scholar] [CrossRef]
- Hristova, Y.; Kuchment, P.; Nguyen, L. Reconstruction and Time Reversal in Thermoacoustic Tomography in Acoustically Homogeneous and Inhomogeneous Media. Inverse Probl. 2008, 24, 055006. [Google Scholar] [CrossRef] [Green Version]
- Firouzi, K.; Cox, B.T.; Treeby, B.E.; Saffari, N. A First-Order k-Space Model for Elastic Wave Propagation in Heterogeneous Media. J. Acoust. Soc. Am. 2012, 132, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, Y.; Wang, T.; Clement, G.T. A K-Space Method for Moderately Nonlinear Wave Propagation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1664–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, B.; Xing, D.; Chen, Q.; Zeng, Y.; Wang, Y. Photoacoustic and Ultrasonic Coimage with a Linear Transducer Array. Opt. Lett. 2004, 29, 1760–1762. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, M.; Wang, L.V. Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography—II: Cylindrical Geometry. IEEE Trans. Med. Imaging 2002, 21, 829–833. [Google Scholar] [CrossRef]
- Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Functional Photoacoustic Microscopy for High-Resolution and Noninvasive in Vivo Imaging. Nat. Biotechnol. 2006, 24, 848–851. [Google Scholar] [CrossRef]
- Stoica, G.; Maslov, K.; Wang, L.V. In Vivo Dark-Field Reflection-Mode Photoacoustic Microscopy. Opt. Lett. 2005, 30, 625–627. [Google Scholar] [CrossRef]
- Chatni, M.R.; Yao, J.; Danielli, A.; Favazza, C.P.; Maslov, K.I.; Wang, L.V. Functional Photoacoustic Microscopy of PH. J. Biomed. Opt. 2011, 16, 100503. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Singh, M.S. Elastic Property Attributes to Photoacoustic Signals: An Experimental Phantom Study. Opt. Lett. 2014, 39, 3970–3973. [Google Scholar] [CrossRef]
- Pang, G.A.; Poisson, F.; Laufer, J.; Haisch, C.; Bossy, E. Theoretical and experimental study of photoacoustic excitation of silica-coated gold nanospheres in water. J. Phys. Chem. C 2019, 124, 1088–1098. [Google Scholar] [CrossRef] [Green Version]
- Tseng, S.-H.; Bargo, P.; Durkin, A.; Kollias, N. Chromophore Concentrations, Absorption and Scattering Properties of Human Skin in-Vivo. Opt. Express 2009, 17, 14599. [Google Scholar] [CrossRef] [Green Version]
- Rajian, J.R.; Carson, P.L.; Wang, X.; Kruger, W.R.A.L.; Kiser, D.R.; Reinecke, G.A.; Kruger, K.D. Quantitative Photoacoustic Measurement of Tissue Optical Absorption Spectrum Aided by an Optical Contrast Agent. Opt. Express 2009, 17, 4879–4889. [Google Scholar] [CrossRef] [Green Version]
- Laufer, J.; Delpy, D.; Elwell, C.; Beard, P. Quantitative Spatially Resolved Measurement of Tissue Chromophore Concentrations Using Photoacoustic Spectroscopy: Application to the Measurement of Blood Oxygenation and Haemoglobin Concentration. Phys. Med. Biol. 2007, 52, 141–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Dar, I.A.; Tao, C.; Liu, X.; Deng, C.X.; Wang, X. Photoacoustic Spectrum Analysis for Microstructure Characterization in Biological Tissue: A Feasibility Study. Appl. Phys. Lett. 2012, 101, 221102. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, S.; Tao, C.; Wang, X.; Liu, X. Photoacoustic Tomography of Tissue Subwavelength Microstructure with a Narrowband and Low Frequency System. Appl. Phys. Lett. 2012, 101, 034105. [Google Scholar] [CrossRef]
- Hysi, E.; Moore, M.J.; Strohm, E.M.; Kolios, M.C. A Tutorial in Photoacoustic Microscopy and Tomography Signal Processing Methods. J. Appl. Phys. 2021, 129, 141102. [Google Scholar] [CrossRef]
- Kumon, R.E.; Deng, C.X.; Wang, X. Frequency-Domain Analysis of Photoacoustic Imaging Data from Prostate Adenocarcinoma Tumors in a Murine Model. Ultrasound Med. Biol. 2011, 37, 834–839. [Google Scholar] [CrossRef] [Green Version]
- Kamath, S.D.; Mahato, K.K.; Ray, S. Photoacoustic Spectroscopy of Ovarian Normal, Benign, and Malignant Tissues: A Pilot Study. J. Biomed. Opt. 2011, 16, 067001. [Google Scholar] [CrossRef]
- Priya, M.; Satish Rao, B.S.; Ray, S.; Mahato, K.K. Prediction of Absorption Coefficients by Pulsed Laser Induced Photoacoustic Measurements. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 127, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.; Satish Rao, B.S.; Chandra, S.; Datta, A.; Nayak, S.G.; Mahato, K.K. Monitoring Breast Tumor Progression by Photoacoustic Measurements: A Xenograft Mice Model Study. J. Biomed. Opt. 2015, 20, 105002. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xie, X.; Ku, G.; Wang, L.V.; Stoica, G. Noninvasive Imaging of Hemoglobin Concentration and Oxygenation in the Rat Brain Using High-Resolution Photoacoustic Tomography. J. Biomed. Opt. 2006, 11, 024015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Maslov, K.; Tsytsarev, V.; Wang, L.V. Functional Transcranial Brain Imaging by Optical-Resolution Photoacoustic Microscopy. J. Biomed. Opt. 2009, 14, 040503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; Wang, L.V. Photoacoustic Brain Imaging: From Microscopic to Macroscopic Scales. Neurophotonics 2014, 1, 011003. [Google Scholar] [CrossRef] [Green Version]
- Na, S.; Russin, J.J.; Lin, L.; Yuan, X.; Hu, P.; Jann, K.B.; Yan, L.; Maslov, K.; Shi, J.; Wang, D.J.; et al. Massively Parallel Functional Photoacoustic Computed Tomography of the Human Brain. Nat. Biomed. Eng. 2021, 6, 584–592. [Google Scholar] [CrossRef]
- Mirg, S.; Chen, H.; Turner, K.L.; Gheres, K.W.; Liu, J.; Gluckman, B.J.; Drew, P.J.; Kothapalli, S.R. Awake Mouse Brain Photoacoustic and Optical Imaging through a Transparent Ultrasound Cranial Window. Opt. Lett. 2022, 47, 1121–1124. [Google Scholar] [CrossRef]
- Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L.V. Noninvasive Laser-Induced Photoacoustic Tomography for Structural and Functional in Vivo Imaging of the Brain. Nat. Biotechnol. 2003, 21, 803–806. [Google Scholar] [CrossRef]
- Ku, G.; Wang, X.; Xie, X.; Stoica, G.; Wang, L.V. Imaging of Tumor Angiogenesis in Rat Brains in Vivo by Photoacoustic Tomography. Appl. Opt. 2005, 44, 770–775. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Wang, Y.c.; Chen, H.; Li, X.; Zhou, L.; Min, C.; Zhu, S.; Yuan, X. Label-Free Identification of Human Glioma Xenograft of Mouse Brain with Quantitative Ultraviolet Photoacoustic Histology Imaging. J. Biophotonic 2022, 15, e202100329. [Google Scholar] [CrossRef]
- Kang, J.; Koehler, R.C.; Graham, E.M.; Boctor, E.M. Photoacoustic Assessment of the Fetal Brain and Placenta as a Method of Non-Invasive Antepartum and Intrapartum Monitoring. Exp. Neurol. 2022, 347, 113898. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Huang, Q.; DiSpirito, A.; Vu, T.; Rong, Q.; Peng, X.; Sheng, H.; Shen, X.; Zhou, Q.; Jiang, L.; et al. Real-Time Whole-Brain Imaging of Hemodynamics and Oxygenation at Micro-Vessel Resolution with Ultrafast Wide-Field Photoacoustic Microscopy. Light: Sci. Appl. 2022, 11, 138. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Qi, W.; Liang, X.; Guo, H.; Liu, Q.; Xi, L. Photoacoustic Imaging of Brain Functions: Wide Filed-of-View Functional Imaging with High Spatiotemporal Resolution. Laser Photonics Rev. 2022, 16, 2100304. [Google Scholar] [CrossRef]
- Wang, X.; Chamberland, D.L.; Jamadar, D.A. Noninvasive Photoacoustic Tomography of Human Peripheral Joints toward Diagnosis of Inflammatory Arthritis. Opt. Lett. 2007, 32, 3002. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Suresh, T.; Garikipati, A.; Dangi, A.; Kothapalli, S.R. Modeling combined ultrasound and photoacoustic imaging: Simulations aiding device development and artificial intelligence. Photoacoustics 2021, 24, 100304. [Google Scholar] [CrossRef]
- Huynh, N.; Huynh, N.; Francies, O.; Manson, J.; Zhu, J.; Zhang, E.; Zhang, E.; Cox, B.; Plumb, A.; Beard, P.; et al. High Resolution 3D Photoacoustic Scanner for Clinical Vascular Imaging: Application to the Assessment of Inflammatory Arthritis. In Proceedings of the Biophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN), Paper TTu4B.2. Fort Lauderdale, FL, USA, 24–27 April 2022. [Google Scholar] [CrossRef]
- Jo, J.; Tian, C.; Xu, G.; Sarazin, J.; Schiopu, E.; Gandikota, G.; Wang, X. Photoacoustic Tomography for Human Musculoskeletal Imaging and Inflammatory Arthritis Detection. Photoacoustics 2018, 12, 82. [Google Scholar] [CrossRef]
- Jo, J.; Xu, G.; Zhu, Y.; Burton, M.; Sarazin, J.; Schiopu, E.; Gandikota, G.; Wang, X. Detecting Joint Inflammation by an LED-Based Photoacoustic Imaging System: A Feasibility Study. J. Biomed. Opt. 2018, 23, 1. [Google Scholar] [CrossRef]
- Falk, E.; Shah, P.K.; Fuster, V. Coronary Plaque Disruption. Circulation 1995, 92, 657–671. [Google Scholar] [CrossRef]
- Farb, A.; Burke, A.P.; Tang, A.L.; Liang, Y.; Mannan, P.; Smialek, J.; Virmani, R. Coronary Plaque Erosion without Rupture into a Lipid Core. A Frequent Cause of Coronary Thrombosis in Sudden Coronary Death. Circulation 1996, 93, 1354–1363. [Google Scholar] [CrossRef]
- Davies, M.J. A Macro and Micro View of Coronary Vascular Insult in Ischemic Heart Disease. Circulation 1990, 82, II38–II46. [Google Scholar]
- Allen, T.J.; Hall, A.; Dhillon, A.P.; Owen, J.S.; Beard, P.C. Spectroscopic Photoacoustic Imaging of Lipid-Rich Plaques in the Human Aorta in the 740 to 1400 Nm Wavelength Range. J. Biomed. Opt. 2012, 17, 061209. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, S.; Ji, X.; Zhou, Q.; Xing, D. Characterization of Lipid-Rich Aortic Plaques by Intravascular Photoacoustic Tomography: Ex Vivo and in Vivo Validation in a Rabbit Atherosclerosis Model with Histologic Correlation. J. Am. Coll Cardiol. 2014, 64, 385–390. [Google Scholar] [CrossRef] [Green Version]
- Hui, J.; Li, R.; Phillips, E.H.; Goergen, C.J.; Sturek, M.; Cheng, J.X. Bond-Selective Photoacoustic Imaging by Converting Molecular Vibration into Acoustic Waves. Photoacoustics 2016, 4, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Yantsen, E.; Larson, T.; Karpiouk, A.B.; Sethuraman, S.; Su, J.L.; Sokolov, K.; Emelianov, S.Y. Plasmonic Intravascular Photoacoustic Imaging for Detection of Macrophages in Atherosclerotic Plaques. Nano Lett. 2009, 9, 2212–2217. [Google Scholar] [CrossRef]
- Quillard, T.; Libby, P. Molecular Imaging of Atherosclerosis for Improving Diagnostic and Therapeutic Development. Circ. Res. 2012, 111, 231–244. [Google Scholar] [CrossRef] [Green Version]
- O’Donnell, M.; McVeigh, E.R.; Strauss, H.W.; Tanaka, A.; Bouma, B.E.; Tearney, G.J.; Guttman, M.A.; Garcia, E.V. Multimodality Cardiovascular Molecular Imaging Technology. J. Nucl. Med. 2010, 51, 38S. [Google Scholar] [CrossRef] [Green Version]
- Karpiouk, A.B.; Aglyamov, S.R.; Mallidi, S.; Shah, J.; Scott, W.G.; Rubin, J.M.; Emelianov, S.Y. Combined Ultrasound and Photoacoustic Imaging to Detect and Stage Deep Vein Thrombosis: Phantom and Ex Vivo Studies. J. Biomed. Opt. 2008, 13, 054061. [Google Scholar] [CrossRef]
- Lao, Y.; Xing, D.; Yang, S.; Xiang, L. Noninvasive Photoacoustic Imaging of the Developing Vasculature during Early Tumor Growth. Phys. Med. Biol. 2008, 53, 4203–4212. [Google Scholar] [CrossRef]
- Siphanto, R.I.; Thumma, K.K.; Kolkman, R.G.M.; van Leeuwen, T.G.; de Mul, F.F.M.; van Neck, J.W.; van Adrichem, L.N.A.; Steenbergen, W. Serial Noninvasive Photoacoustic Imaging of Neovascularization in Tumor Angiogenesis. Opt. Express 2005, 13, 89–95. [Google Scholar] [CrossRef]
- Xiang, L.Z.; Xing, D.; Gu, H.M.; Zhou, F.F.; Yang, D.W.; Zeng, L.M.; Yang, S.H. In Vivo Monitoring of Neovascularization in Tumour by Photoacoustic Tomography. Chin. Phys. Lett. 2007, 24, 751. [Google Scholar] [CrossRef]
- Galanzha, E.I.; Zharov, V.P. Photoacoustic Flow Cytometry. Methods 2012, 57, 280–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanzha, E.I.; Sarimollaoglu, M.; Nedosekin, D.A.; Keyrouz, S.G.; Mehta, J.L.; Zharov, V.P. In Vivo Flow Cytometry of Circulating Clots Using Negative Photothermal and Photoacoustic Contrasts. Cytometry A 2011, 79, 814–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hysi, E.; Saha, R.K.; Rui, M.; Kolios, M.C. Detection and Characterization of Red Blood Cell (RBC) Aggregation with Photoacoustics. Photons Plus Ultrasound: Imaging Sens. 2012, 8223, 647–656. [Google Scholar] [CrossRef]
- Saha, R.K.; Kolios, M.C. A Simulation Study on Photoacoustic Signals from Red Blood Cells. J. Acoust. Soc. Am. 2011, 129, 2935–2943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cronan, J.J.; Dorfman, G.S.; Scola, F.H.; Schepps, B.; Alexander, J. Deep Venous Thrombosis: US Assessment Using Vein Compression. Radiology 1987, 162, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Xi, G.; Wagner, K.R.; Keep, R.F.; Hua, Y.; de Courten-Myers, G.M.; Broderick, J.P.; Brott, T.G.; Hoff, J.T. Role of Blood Clot Formation on Early Edema Development after Experimental Intracerebral Hemorrhage. Stroke 1998, 29, 2580–2586. [Google Scholar] [CrossRef] [Green Version]
- Hysi, E.; Saha, R.K.; Kolios, M.C. On the Use of Photoacoustics to Detect Red Blood Cell Aggregation. Biomed. Opt. Express 2012, 3, 2326. [Google Scholar] [CrossRef]
- Strohm, E.M.; Berndl, E.S.L.; Kolios, M.C. Probing Red Blood Cell Morphology Using High-Frequency Photoacoustics. Biophys. J. 2013, 105, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-T.; Li, M.-L.; Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Three-Dimensional Imaging of Skin Melanoma in Vivo by Dual-Wavelength Photoacoustic Microscopy. J. Biomed. Opt. 2006, 11, 034032. [Google Scholar] [CrossRef]
- Piras, D.; van den Engh, F.M.; van Hespen, J.C.G.; Klaase, J.M.; Heijblom, M.; Manohar, S.; van Leeuwen, T.G.; Steenbergen, W.; Xia, W. Visualizing Breast Cancer Using the Twente Photoacoustic Mammoscope: What Do We Learn from Twelve New Patient Measurements? Opt. Express 2012, 20, 11582–11597. [Google Scholar] [CrossRef] [Green Version]
- Gerling, M.; Zhao, Y.; Nania, S.; Norberg, K.J.; Verbeke, C.S.; Englert, B.; Kuiper, R.V.; Bergström, Å.; Hassan, M.; Neesse, A.; et al. Real-Time Assessment of Tissue Hypoxia in Vivo with Combined Photoacoustics and High-Frequency Ultrasound. Theranostics 2014, 4, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Li, M.L.; Oh, J.T.; Xie, X.; Ku, G.; Wang, W.; Li, C.; Lungu, G.; Stoica, G.; Wang, L.V. Simultaneous Molecular and Hypoxia Imaging of Brain Tumors in Vivo Using Spectroscopic Photoacoustic Tomography. Proc. IEEE 2008, 96, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.; Morgounova, E.; Jiang, C.; Choi, J.; Bischof, J.; Ashkenazi, S. In Vivo Photoacoustic Lifetime Imaging of Tumor Hypoxia in Small Animals. J. Biomed. Opt. 2013, 18, 076019. [Google Scholar] [CrossRef] [Green Version]
- Pantel, K.; Alix-Panabières, C. Circulating Tumour Cells in Cancer Patients: Challenges and Perspectives. Trends Mol. Med. 2010, 16, 398–406. [Google Scholar] [CrossRef]
- Galanzha, E.I.; Shashkov, E.V.; Spring, P.M.; Suen, J.Y.; Zharov, V.P. In Vivo, Noninvasive, Label-Free Detection and Eradication of Circulating Metastatic Melanoma Cells Using Two-Color Photoacoustic Flow Cytometry with a Diode Laser. Cancer Res. 2009, 69, 7926–7934. [Google Scholar] [CrossRef] [Green Version]
- Galanzha, E.I.; Shashkov, E.V.; Khlebtsov, N.G.; Tuchin, V.V.; Zharov, V.P. In Vivo Photoacoustic Flow Cytometry for Monitoring of Circulating Single Cancer Cells and Contrast Agents. Opt. Lett. 2006, 31, 3623–3625. [Google Scholar] [CrossRef]
- Wu, D.; Huang, L.; Jiang, M.S.; Jiang, H. Contrast Agents for Photoacoustic and Thermoacoustic Imaging: A Review. Int. J. Mol. Sci. 2014, 15, 23616–23639. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Wang, S.; Reinecke, D.; Kiser, W.; Kruger, R.A.; DeGrado, T.R. Synthesis and Evaluation of Near-Infrared (NIR) Dye-Herceptin Conjugates as Photoacoustic Computed Tomography (PCT) Probes for HER2 Expression in Breast Cancer. Bioconjug. Chem. 2008, 19, 1186–1193. [Google Scholar] [CrossRef] [Green Version]
- Li, P.C.; Wei, C.W.; Liao, C.K.; Chen, C.D.; Pao, K.C.; Wang, C.R.C.; Wu, Y.N.; Shieh, D.-B. Photoacoustic Imaging of Multiple Targets Using Gold Nanorods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1642–1647. [Google Scholar] [CrossRef]
- Homan, K.; Shah, J.; Gomez, S.; Gensler, H.; Karpiouk, A.; Brannon-Peppas, L.; Emelianov, S. Combined Ultrasound and Photoacoustic Imaging of Pancreatic Cancer Using Nanocage Contrast Agents. Photons Plus Ultrasound Imaging Sens. 2009, 7177, 411–416. [Google Scholar] [CrossRef]
- Yang, X.; Skrabalak, S.E.; Li, Z.Y.; Xia, Y.; Wang, L.V. Photoacoustic Tomography of a Rat Cerebral Cortex in Vivo with Au Nanocages as an Optical Contrast Agent. Nano Lett. 2007, 7, 3798–3802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic Imaging in Cancer Detection, Diagnosis, and Treatment Guidance. Trends Biotechnol. 2011, 29, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, J.; Siddiqui, J.; Zhu, Y.; Ni, L.; Kothapalli, S.-R.; Tomlins, S.A.; Wei, J.T.; Keller, E.T.; Udager, A.M.; Udager, A.M.; et al. Photoacoustic Spectral Analysis at Ultraviolet Wavelengths for Characterizing the Gleason Grades of Prostate Cancer. Opt. Lett. 2020, 45, 6042–6045. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.S.S.; Lashkari, B.; Mandelis, A.; Son, J.; Alves-Kotzev, N.; Foster, S.F.; Harduar, M.; Courtney, B. Frequency-Domain Differential Photoacoustic Radar: Theory and Validation for Ultrasensitive Atherosclerotic Plaque Imaging. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Fowlkes, J.B.; Tao, C.; Liu, X.; Wang, X. Photoacoustic Spectrum Analysis for Microstructure Characterization in Biological Tissue: Analytical Model. Ultrasound Med. Biol. 2015, 41, 1473–1480. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Rao, N.A.; Chinni, B.K.; Dogra, V.S. Evaluation of Frequency Domain Analysis of a Multiwavelength Photoacoustic Signal for Differentiating Malignant From Benign and Normal Prostates: Ex Vivo Study With Human Prostates. J. Ultrasound Med. 2016, 35, 2165–2177. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Liu, Y.; Chen, Y.; Xu, C.; Chen, P.; Zhang, M.; Ye, W.; Wu, D.; Huang, S.; Cheng, Q. Quick Identification of Prostate Cancer by Wavelet Transform-Based Photoacoustic Power Spectrum Analysis. Photoacoustics 2022, 25, 100327. [Google Scholar] [CrossRef]
- Biswas, D.; Vasudevan, S.; Chen, G.C.K.; Bhagat, P.; Sharma, N.; Phatak, S. Time–Frequency Based Photoacoustic Spectral Response Technique for Differentiating Human Breast Masses. Biomed. Phys. Eng. Express 2017, 3, 035002. [Google Scholar] [CrossRef]
- Biswas, D.; Gorey, A.; Chen, G.C.K.; Vasudevan, S.; Sharma, N.; Bhagat, P.; Phatak, S. Empirical Wavelet Transform Based Photoacoustic Spectral Response Technique for Assessment of Ex-Vivo Breast Biopsy Tissues. Biomed. Signal Process. Control 2019, 51, 355–363. [Google Scholar] [CrossRef]
- Gorey, A.; Vasudevan, S.; Ansari, M.S.; Bhagat, P.; Phatak, S.; Sharma, N.; Chen, G.C.K. Development of a Compact Laser-Diode Based Frequency Domain Photoacoustic Sensing System: Application of Human Breast Cancer Diagnosis. Rev. Sci. Instrum. 2019, 90, 114101. [Google Scholar] [CrossRef]
- Choi, S.s.S.; Mandelis, A.; Guo, X.; Lashkari, B.; Kellnberger, S.; Ntziachristos, V. Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for Noninvasive Early Cancer Detection and Tissue Hypoxia Monitoring. J. Biophotonics 2016, 9, 388–395. [Google Scholar] [CrossRef]
- Simandoux, O.; Stasio, N.; Gateau, J.; Huignard, J.P.; Moser, C.; Psaltis, D.; Bossy, E. Optical-Resolution Photoacoustic Imaging through Thick Tissue with a Thin Capillary as a Dual Optical-in Acoustic-out Waveguide. Appl. Phys. Lett. 2015, 106, 094102. [Google Scholar] [CrossRef] [Green Version]
- Hysi, E.; Saha, R.K.; Kolios, M.C. Photoacoustic Ultrasound Spectroscopy for Assessing Red Blood Cell Aggregation and Oxygenation. J. Biomed. Opt. 2012, 17, 125006. [Google Scholar] [CrossRef] [Green Version]
- Bok, T.H.; Hysi, E.; Kolios, M.C. In Vitro Photoacoustic Spectroscopy of Pulsatile Blood Flow: Probing the Interrelationship between Red Blood Cell Aggregation and Oxygen Saturation. J. Biophotonics 2018, 11, e201700300. [Google Scholar] [CrossRef]
- Feng, T.; Zhang, C.; Jay Guo, L.; Yuan, J.; Wang, X.; Kumon, R.E.; Deng, C.X.; Wang, X.; Yang, Y.; Wang, S.; et al. Characterizing Cellular Morphology by Photoacoustic Spectrum Analysis with an Ultra-Broadband Optical Ultrasonic Detector. Opt. Express 2016, 24, 19853–19862. [Google Scholar] [CrossRef] [Green Version]
- Saha, R.K. Computational Modeling of Photoacoustic Signals from Mixtures of Melanoma and Red Blood Cells. J. Acoust. Soc. Am. 2014, 136, 2039. [Google Scholar] [CrossRef]
- Saha, R.K.; Karmakar, S.; Roy, M. Computational Investigation on the Photoacoustics of Malaria Infected Red Blood Cells. PLoS ONE 2012, 7, e51774. [Google Scholar] [CrossRef]
- Fadhel, M.N.; Hysi, E.; Strohm, E.M.; Kolios, M.C. Optical and Photoacoustic Radiofrequency Spectroscopic Analysis for Detecting Red Blood Cell Death. J. Biophotonics 2019, 12, e201800431. [Google Scholar] [CrossRef]
- Daeichin, V.; Wu, M.; de Jong, N.; van der Steen, A.F.W.; van Soest, G. Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque. Ultrasound Med. Biol. 2016, 42, 2017–2025. [Google Scholar] [CrossRef]
- Cao, Y.; Kole, A.; Lan, L.; Wang, P.; Hui, J.; Sturek, M.; Cheng, J.X. Spectral Analysis Assisted Photoacoustic Imaging for Lipid Composition Differentiation. Photoacoustics 2017, 7, 12–19. [Google Scholar] [CrossRef]
- Feng, T.; Perosky, J.E.; Kozloff, K.M.; Xu, G.; Cheng, Q.; Du, S.; Yuan, J.; Deng, C.X.; Wang, X. Characterization of Bone Microstructure Using Photoacoustic Spectrum Analysis. Opt. Express 2015, 23, 25217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, T.; Xie, Y.; Xie, W.; Chen, Y.; Wang, P.; Li, L.; Han, J.; Ta, D.; Cheng, L.; Cheng, Q. Characterization of Multi-Biomarkers for Bone Health Assessment Based on Photoacoustic Physicochemical Analysis Method. Photoacoustics 2022, 25, 100320. [Google Scholar] [CrossRef] [PubMed]
- Biswas, D.; Kumari, A.; Chen, G.C.K.; Vasudevan, S.; Gupta, S.; Shukla, S.; Garg, U.K. Quantitative Differentiation of Pneumonia from Normal Lungs: Diagnostic Assessment Using Photoacoustic Spectral Response. Appl. Spectrosc. 2017, 71, 2532–2537. [Google Scholar] [CrossRef] [PubMed]
- Long, H.; Chen, B.; Li, W.; Xian, Y.; Peng, Z. Blood Glucose Detection Based on Teager-Kaiser Main Energy of Photoacoustic Signal. Comput. Biol. Med. 2021, 134, 104552. [Google Scholar] [CrossRef]
PA Imaging Technology | Application Area | Reported Laser Wavelength | Reference |
---|---|---|---|
PAT | Brain | 584- and 600-nm | [68] |
PAM | Brain Imaging | 570 and 578 nm | [69] |
Photoacoustic computed tomography | Human Brain | 1064 nm and 694 nm | [71] |
OR-PAM | Awake mouse brain imaging | 532 nm | [72] |
Photoacoustic computed tomography | Development and treatment of rheumatoid arthritis | 780 nm | [80] |
PAT | Human Musculoskeletal Imaging and Inflammatory Arthritis detection | 720-nm | [82] |
LED based PAT | Joint Inflammation | 850-nm wavelength | [83] |
Vibration-based PA imaging | Lipid-laden plaques | 400 nm to 1.1 μm | [89] |
Photoacoustic spectral analysis | Prostate cancer | 266 nm | [119] |
PAT | Breast tumour imaging | 1064 nm | [32] |
Photoacoustic and ultrasound (PAUS) assembly | Porcine Pancreatic Cancer imaging | 680–950 nm | [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, D.; Roy, S.; Vasudevan, S. Biomedical Application of Photoacoustics: A Plethora of Opportunities. Micromachines 2022, 13, 1900. https://doi.org/10.3390/mi13111900
Biswas D, Roy S, Vasudevan S. Biomedical Application of Photoacoustics: A Plethora of Opportunities. Micromachines. 2022; 13(11):1900. https://doi.org/10.3390/mi13111900
Chicago/Turabian StyleBiswas, Deblina, Swarup Roy, and Srivathsan Vasudevan. 2022. "Biomedical Application of Photoacoustics: A Plethora of Opportunities" Micromachines 13, no. 11: 1900. https://doi.org/10.3390/mi13111900
APA StyleBiswas, D., Roy, S., & Vasudevan, S. (2022). Biomedical Application of Photoacoustics: A Plethora of Opportunities. Micromachines, 13(11), 1900. https://doi.org/10.3390/mi13111900