Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LeCun, Y. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Kwon, H.; Kang, S.; Park, W.; Park, J.; Lee, Y. Deep learning based pre-screening method for depression with imagery frontal eeg channels. In Proceedings of the 2019 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 16–18 October 2019. [Google Scholar]
- Joo, M.; Park, A.; Kim, K.; Son, W.-J.; Lee, H.S.; Lim, G.; Lee, J.; Lee, D.H.; An, J.; Kim, J.H.; et al. A deep learning model for cell growth inhibition IC50 prediction and its application for gastric cancer patients. Int. J. Mol. Sci. 2019, 20, 6276. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.W.; Lim, S.H.; Jeong, J.G.; Kim, Y.J.; Kim, K.G.; Jeon, J.Y. A deep learning algorithm for automated measurement of vertebral body compression from X-ray images. Sci. Rep. 2021, 11, 13732. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Livne, M.; Rieger, J.; Aydin, O.U.; Taha, A.A.; Akay, E.M.; Kossen, T.; Sobesky, J.; Kelleher, J.D.; Hildebrand, K.; Frey, D.; et al. A U-Net Deep Learning Framework for High Performance Vessel Segmentation in Patients with Cerebrovascular Disease. Front. Neurosci. 2019, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Komar, M.; Yakobchuk, P.; Golovko, V.; Dorosh, V.; Sachenko, A. Deep neural network for image recognition based on the Caffe framework. In Proceedings of the 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, 21–25 August 2018; pp. 102–106. [Google Scholar]
- Li, K. Recurrent neural network language model adaptation for conversational speech recognition. Interspeech 2018, 2018, 3373–3377. [Google Scholar]
- Burr, G.W.; Shelby, R.M.; Sebastian, A.; Kim, S.; Kim, S.; Sidler, S.; Virwani, K.; Ishii, M.; Narayanan, P.; Fumarola, A.; et al. Neuromorphic computing using non-volatile memory. Adv. Phys. X 2017, 2, 89–124. [Google Scholar] [CrossRef]
- Yu, S. Neuro-Inspired Computing with Emerging Nonvolatile Memorys. Proc. IEEE 2018, 106, 260–285. [Google Scholar] [CrossRef]
- Lee, S.-T.; Kim, H.; Bae, J.-H.; Yoo, H.; Choi, N.Y.; Kwon, D.; Lim, S.; Park, B.-G.; Lee, J.-H. High-Density and Highly-Reliable Binary Neural Networks Using NAND Flash Memory Cells as Synaptic Devices. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Seongjae, C. Volatile and Nonvolatile Memory Devices for Neuromorphic and Processing-in-memory Applications. J. Semicond. Technol. Sci. 2022, 22, 30–46. [Google Scholar]
- Lee, S.-T.; Lee, J.-H. Neuromorphic Computing Using NAND Flash Memory Architecture With Pulse Width Modulation Scheme. Front. Neurosci. 2020, 14, 571292. [Google Scholar] [CrossRef]
- Rosselló, J.L.; Canals, V.; Morro, A.; Oliver, A. Hardware Implementation of Stochastic Spiking Neural Networks. Int. J. Neural Syst. 2012, 22, 1250014. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-T.; Lim, S.; Choi, N.Y.; Bae, J.-H.; Kwon, D.; Park, B.-G.; Lee, J.-H. Operation Scheme of Multi-Layer Neural Networks Using NAND Flash Memory as High-Density Synaptic Devices. IEEE J. Electron Devices Soc. 2019, 7, 1085–1093. [Google Scholar] [CrossRef]
- Sagar, S.; Mohanan, K.U.; Cho, S.; Majewski, L.A.; Das, B.C. Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing. Sci. Rep. 2022, 12, 3808. [Google Scholar] [CrossRef]
- Mohanan, K.U.; Cho, S.; Park, B.-G. Medium-Temperature-Oxidized GeOx Resistive-Switching Random-Access Memory and Its Applicability in Processing-in-Memory Computing. Nanoscale Res. Lett. 2022, 17, 63. [Google Scholar] [CrossRef]
- Lee, S.T.; Lim, S.; Choi, N.; Bae, J.H.; Kim, C.H.; Lee, S.; Lee, D.H.; Lee, T.; Chung, S.; Lee, J.H.; et al. Neuromorphic technology based on charge storage memory devices. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018. [Google Scholar]
- Shim, W.; Seo, J.-S.; Yu, S. Two-step write–verify scheme and impact of the read noise in multilevel RRAM-based inference engine. Semicond. Sci. Technol. 2020, 35, 115026. [Google Scholar] [CrossRef]
- Lee, J.H.; Delbruck, T.; Pfeiffer, M. Training Deep Spiking Neural Networks Using Backpropagation. Front. Neurosci. 2016, 10, 508. [Google Scholar] [CrossRef]
- Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8. [Google Scholar]
- Diehl, P.U.; Zarrella, G.; Cassidy, A.; Pedroni, B.U.; Neftci, E. Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In Proceedings of the 2016 IEEE International Conference on Rebooting Computing (ICRC), San Diego, CA, USA, 17–19 October 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Yamazaki, K.; Vo-Ho, V.-K.; Bulsara, D.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12, 863. [Google Scholar] [CrossRef]
- Wu, J.; Chua, Y.; Zhang, M.; Yang, Q.; Li, G.; Li, H. Deep Spiking Neural Network with Spike Count based Learning Rule. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, J.; Yılmaz, E.; Zhang, M.; Li, H.; Tan, K.C. Deep Spiking Neural Networks for Large Vocabulary Automatic Speech Recognition. Front. Neurosci. 2020, 14, 199. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.-H.; Lim, S.; Park, B.-G.; Lee, J.-H. High-Density and Near-Linear Synaptic Device Based on a Reconfigurable Gated Schottky Diode. IEEE Electron Device Lett. 2017, 38, 1153–1156. [Google Scholar] [CrossRef]
- Lee, S.-T.; Lim, S.; Bae, J.-H.; Kwon, D.; Kim, H.-S.; Park, B.-G.; Lee, J.-H. Pruning for Hardware-Based Deep Spiking Neural Networks Using Gated Schottky Diode as Synaptic Devices. J. Nanosci. Nanotechnol. 2020, 20, 6603–6608. [Google Scholar] [CrossRef]
- Xia, Z.; Kim, D.S.; Jeong, N.; Kim, Y.-G.; Kim, J.-H.; Lee, K.-H.; Park, Y.-K.; Chung, C.; Lee, H.; Han, J. Comprehensive modeling of NAND flash memory reliability: Endurance and data retention. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; pp. 5.1–5.4. [Google Scholar] [CrossRef]
- Wann, H.; Hu, C. High-endurance ultra-thin tunnel oxide in MONOS device structure for dynamic memory application. IEEE Electron Device Lett. 1995, 16, 491–493. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, H.; Park, J.; Kwon, M.-W.; Baek, M.-H.; Lee, J.-J.; Park, B.-G. System-Level Simulation of Hardware Spiking Neural Network Based on Synaptic Transistors and I&F Neuron Circuits. IEEE Electron Device Lett. 2018, 39, 1441–1444. [Google Scholar] [CrossRef]
- Lee, S.-T.; Woo, S.Y.; Lee, J.-H. Low-Power Binary Neuron Circuit with Adjustable Threshold for Binary Neural Networks Using NAND Flash Memory. IEEE Access 2020, 8, 153334–153340. [Google Scholar] [CrossRef]
- Kiselev, M. Rate coding vs. temporal coding-is optimum between? In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1355–1359. [Google Scholar]
- Han, B.; Roy, K. Deep Spiking Neural Network: Energy Efficiency Through Time Based Coding. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 388–404. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.; Na, B.; Yoon, S. T2FSNN: Deep Spiking Neural Networks with Time-to-first-spike Coding. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 20–24 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Göltz, J.; Baumbach, A.; Billaudelle, S.; Kungl, A.F.; Breitwieser, O.; Meier, K.; Schemmel, J.; Kriener, L.; Petrovici, M.A. Fast and deep neuromorphic learning with first-spike coding. In Proceedings of the Neuro-Inspired Computational Elements Workshop, Heidelberg, Germany, 17–20 March 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-T.; Bae, J.-H. Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices. Micromachines 2022, 13, 1800. https://doi.org/10.3390/mi13111800
Lee S-T, Bae J-H. Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices. Micromachines. 2022; 13(11):1800. https://doi.org/10.3390/mi13111800
Chicago/Turabian StyleLee, Sung-Tae, and Jong-Ho Bae. 2022. "Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices" Micromachines 13, no. 11: 1800. https://doi.org/10.3390/mi13111800
APA StyleLee, S.-T., & Bae, J.-H. (2022). Investigation of Deep Spiking Neural Networks Utilizing Gated Schottky Diode as Synaptic Devices. Micromachines, 13(11), 1800. https://doi.org/10.3390/mi13111800