A Multi-Part Orientation Planning Schema for Fabrication of Non-Related Components Using Additive Manufacturing
Abstract
:1. Introduction
2. Literature Survey
- ABS is typically preferred by engineers as the material of choice for industrial applications due to its enhanced ductility, high flexural strength, and greater elongation than PLA [74].
- Compared to PLA, ABS is more resistant to physical stress (UV radiation and high temperatures) [75].
- PLA starts to lose its structural integrity and distort as it gets closer to 60 degrees, especially while carrying a larger load [77].
- PLA components should not be used outside more frequently because they deform quickly and soften when exposed to sunlight [78].
3. Methodology
3.1. Estimation of the First Criterion (Q)
- Parallel and perpendicular surfaces must increase along the z-direction (build axis).
- Cylindrical structures (a hole, cone, etc.) with their axis aligned in the z-direction should be maximized.
- The count of curved surfaces must be higher in the horizontal plane.
- The base surface area has to be maximized.
- Angular/inclined surfaces should be minimized.
- The overhanging area must be reduced.
- Trapped volume has to be minimum.
3.2. Estimation of Second Criterion (T)
3.3. Optimization Using Genetic Algorithm
- BEGIN
- Encoding of chromosome (Permutation Encoding)
- Population Size
- Crossover Probability
- Mutation Probability
- Generate initial solutions randomly with Np population size
- Evaluation of each individual in the population based on objection function
- WHILE (Generation < Termination Criteria)
- Selection (Roulette Selection)
- Crossover (Two-point crossover)
- Mutation (Double inversion mutation)
- Evaluation of individuals in the new population
- Select the best solutions to become the next generation
- Generation = Generation+ 1
- REPEAT
- END WHILE
- Retain the best solution obtained.
4. Case Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalpadulo, E.; Pini, F.; Leali, F. Integrated CAD Platform Approach for Design for Additive Manufacturing of High Performance Automotive Components. Int. J. Interact. Des. Manuf. 2020, 14, 899–909. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The Status, Challenges, and Future of Additive Manufacturing in Engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints. CIRP Ann. 2016, 65, 737–760. [Google Scholar] [CrossRef] [Green Version]
- Ford, S.; Despeisse, M. Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. (Eds.) Materials for Additive Manufacturing. In Additive Manufacturing Technologies; Springer International Publishing: Cham, Switzerland, 2021; pp. 379–428. ISBN 978-3-030-56127-7. [Google Scholar]
- Foresti, R.; Ghezzi, B.; Vettori, M.; Bergonzi, L.; Attolino, S.; Rossi, S.; Tarabella, G.; Vurro, D.; von Zeppelin, D.; Iannotta, S.; et al. 3D Printed Masks for Powders and Viruses Safety Protection Using Food Grade Polymers: Empirical Tests. Polymers 2021, 13, 617. [Google Scholar] [CrossRef] [PubMed]
- Rezvani Ghomi, E.; Khosravi, F.; Saedi Ardahaei, A.; Dai, Y.; Neisiany, R.E.; Foroughi, F.; Wu, M.; Das, O.; Ramakrishna, S. The Life Cycle Assessment for Polylactic Acid (PLA) to Make It a Low-Carbon Material. Polymers 2021, 13, 1854. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.P.; LaLonde, A.D.; Ma, J. Processing Parameters in Laser Powder Bed Fusion Metal Additive Manufacturing. Mater. Des. 2020, 193, 108762. [Google Scholar] [CrossRef]
- Lacroix, R.; Seifert, R.W.; Timonina-Farkas, A. Benefiting from Additive Manufacturing for Mass Customization across the Product Life Cycle; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar]
- Lacroix, R.; Timonina-Farkas, A.; Seifert, R.W. Utilizing Additive Manufacturing and Mass Customization under Capacity Constraints; Social Science Research Network: Rochester, NY, USA, 2020. [Google Scholar]
- Zhang, Y.; Bernard, A. Grouping Parts for Multiple Parts Production in Additive Manufacturing. Procedia CIRP 2014, 17, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.A.; Rocha, A.M.A.C.; Costa, L.A. Many-Objective Optimization of Build Part Orientation in Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2021, 112, 747–762. [Google Scholar] [CrossRef]
- Spoerk, M.; Holzer, C.; Gonzalez-Gutierrez, J. Material Extrusion-Based Additive Manufacturing of Polypropylene: A Review on How to Improve Dimensional Inaccuracy and Warpage. J. Appl. Polym. Sci. 2020, 137, 48545. [Google Scholar] [CrossRef] [Green Version]
- Vahabli, E.; Rahmati, S. Hybrid Estimation of Surface Roughness Distribution in FDM Parts Using Analytical Modeling and Empirical Investigation. Int. J. Adv. Manuf. Technol. 2017, 88, 2287–2303. [Google Scholar] [CrossRef]
- Xu, F.; Loh, H.T.; Wong, Y.S. Considerations and Selection of Optimal Orientation for Different Rapid Prototyping Systems. Rapid Prototyp. J. 1999, 5, 54–60. [Google Scholar] [CrossRef]
- Byun, H.S.; Lee, K.H. Determination of Optimal Build Direction in Rapid Prototyping with Variable Slicing. Int. J. Adv. Manuf. Technol. 2005, 28, 307. [Google Scholar] [CrossRef]
- Li, A.; Zhang, Z.; Wang, D.; Yang, J. Optimization Method to Fabrication Orientation of Parts in Fused Deposition Modeling Rapid Prototyping. In Proceedings of the 2010 International Conference on Mechanic Automation and Control Engineering, Wuhan, China, 26–28 June 2010; pp. 416–419. [Google Scholar]
- Wang, W.M.; Zanni, C.; Kobbelt, L. Improved Surface Quality in 3D Printing by Optimizing the Printing Direction. Comput. Graph. Forum 2016, 35, 59–70. [Google Scholar] [CrossRef]
- Zhang, Y.; De Backer, W.; Harik, R.; Bernard, A. Build Orientation Determination for Multi-Material Deposition Additive Manufacturing with Continuous Fibers. Procedia CIRP 2016, 50, 414–419. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Yang, F.; Dong, G.; Tang, Y.; Zhao, Y.F. Orientation Optimization in Layer-Based Additive Manufacturing Process; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 5 December 2016. [Google Scholar]
- Wang, C. Simultaneous Optimization of Build Orientation and Topology for Self-Supported Enclosed Voids in Additive Manufacturing. Comput. Methods Appl. Mech. Eng. 2022, 388, 114227. [Google Scholar] [CrossRef]
- Nezhadfar, P.D.; Thompson, S.; Saharan, A.; Phan, N.; Shamsaei, N. Structural Integrity of Additively Manufactured Aluminum Alloys: Effects of Build Orientation on Microstructure, Porosity, and Fatigue Behavior. Addit. Manuf. 2021, 47, 102292. [Google Scholar] [CrossRef]
- Zhou, Y.; Nomura, T.; Saitou, K. Anisotropic Multicomponent Topology Optimization for Additive Manufacturing With Build Orientation Design and Stress-Constrained Interfaces. J. Comput. Inf. Sci. Eng. 2020, 21, 011007. [Google Scholar] [CrossRef]
- Barclift, M.; Armstrong, A.; Simpson, T.W.; Joshi, S.B. CAD-Integrated Cost Estimation and Build Orientation Optimization to Support Design for Metal Additive Manufacturing; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 3 November 2017. [Google Scholar]
- Langelaar, M. Combined Optimization of Part Topology, Support Structure Layout and Build Orientation for Additive Manufacturing. Struct. Multidiscip. Optim. 2018, 57, 1985–2004. [Google Scholar] [CrossRef] [Green Version]
- Baturynska, I. Statistical Analysis of Dimensional Accuracy in Additive Manufacturing Considering STL Model Properties. Int. J. Adv. Manuf. Technol. 2018, 97, 2835–2849. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mhapsekar, K.; Anand, S. Part Build Orientation Optimization and Neural Network-Based Geometry Compensation for Additive Manufacturing Process. J. Manuf. Sci. Eng. 2017, 140, 031009. [Google Scholar] [CrossRef]
- Qin, Y.; Qi, Q.; Scott, P.J.; Jiang, X. Determination of Optimal Build Orientation for Additive Manufacturing Using Muirhead Mean and Prioritised Average Operators. J. Intell. Manuf. 2019, 30, 3015–3034. [Google Scholar] [CrossRef] [Green Version]
- Ransikarbum, K.; Pitakaso, R.; Kim, N. Evaluation of Assembly Part Build Orientation in Additive Manufacturing Environment Using Data Envelopment Analysis. MATEC Web Conf. 2019, 293, 02002. [Google Scholar] [CrossRef]
- Cheng, L.; To, A. Part-Scale Build Orientation Optimization for Minimizing Residual Stress and Support Volume for Metal Additive Manufacturing: Theory and Experimental Validation. Comput.-Aided Des. 2019, 113, 1–23. [Google Scholar] [CrossRef]
- Wang, C.; Qian, X. Simultaneous Optimization of Build Orientation and Topology for Additive Manufacturing. Addit. Manuf. 2020, 34, 101246. [Google Scholar] [CrossRef]
- Zhang, Y.; Harik, R.; Fadel, G.; Bernard, A. A Statistical Method for Build Orientation Determination in Additive Manufacturing. Rapid Prototyp. J. 2018, 25, 187–207. [Google Scholar] [CrossRef]
- Das, P.; Chandran, R.; Samant, R.; Anand, S. Optimum Part Build Orientation in Additive Manufacturing for Minimizing Part Errors and Support Structures. Procedia Manuf. 2015, 1, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Zwier, M.P.; Wits, W.W. Design for Additive Manufacturing: Automated Build Orientation Selection and Optimization. Procedia CIRP 2016, 55, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Delfs, P.; Töows, M.; Schmid, H.-J. Optimized Build Orientation of Additive Manufactured Parts for Improved Surface Quality and Build Time. Addit. Manuf. 2016, 12, 314–320. [Google Scholar] [CrossRef]
- Jaiswal, P.; Patel, J.; Rai, R. Build Orientation Optimization for Additive Manufacturing of Functionally Graded Material Objects. Int. J. Adv. Manuf. Technol. 2018, 96, 223–235. [Google Scholar] [CrossRef]
- Khodaygan, S.; Golmohammadi, A.H. Multi-Criteria Optimization of the Part Build Orientation (PBO) through a Combined Meta-Modeling/NSGAII/TOPSIS Method for Additive Manufacturing Processes. Int. J. Interact. Des. Manuf. 2018, 12, 1071–1085. [Google Scholar] [CrossRef]
- Pereira, S.; Vaz, A.I.F.; Vicente, L.N. On the Optimal Object Orientation in Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2018, 98, 1685–1694. [Google Scholar] [CrossRef]
- Vaz, A.I.F.; Vicente, L.N. A Particle Swarm Pattern Search Method for Bound Constrained Global Optimization. J. Glob. Optim. 2007, 39, 197–219. [Google Scholar] [CrossRef] [Green Version]
- Vaz, A.I.F.; Vicente, L.N. PSwarm: A Hybrid Solver for Linearly Constrained Global Derivative-Free Optimization. Optim. Methods Softw. 2009, 24, 669–685. [Google Scholar] [CrossRef]
- Cheng, W.; Fuh, J.Y.H.; Nee, A.Y.C.; Wong, Y.S.; Loh, H.T.; Miyazawa, T. Multi-objective Optimization of Part- Building Orientation in Stereolithography. Rapid Prototyp. J. 1995, 1, 12–23. [Google Scholar] [CrossRef]
- Lan, P.-T.; Chou, S.-Y.; Chen, L.-L.; Gemmill, D. Determining Fabrication Orientations for Rapid Prototyping with Stereolithography Apparatus. Comput.-Aided Des. 1997, 29, 53–62. [Google Scholar] [CrossRef]
- Alexander, P.; Allen, S.; Dutta, D. Part Orientation and Build Cost Determination in Layered Manufacturing. Comput.-Aided Des. 1998, 30, 343–356. [Google Scholar] [CrossRef]
- McClurkin, J.E.; Rosen, D.W. Computer-aided Build Style Decision Support for Stereolithography. Rapid Prototyp. J. 1998, 4, 4–13. [Google Scholar] [CrossRef]
- Hur, J.; Lee, K. The Development of a CAD Environment to Determine the Preferred Build-up Direction for Layered Manufacturing. Int. J. Adv. Manuf. Technol. 1998, 14, 247–254. [Google Scholar] [CrossRef]
- Hur, S.-M.; Choi, K.-H.; Lee, S.-H.; Chang, P.-K. Determination of Fabricating Orientation and Packing in SLS Process. J. Mater. Process. Technol. 2001, 112, 236–243. [Google Scholar] [CrossRef]
- Masood, S.H.; Rattanawong, W.; Iovenitti, P. A Generic Algorithm for a Best Part Orientation System for Complex Parts in Rapid Prototyping. J. Mater. Process. Technol. 2003, 139, 110–116. [Google Scholar] [CrossRef]
- Thrimurthulu, K.; Pandey, P.M.; Venkata Reddy, N. Optimum Part Deposition Orientation in Fused Deposition Modeling. Int. J. Mach. Tools Manuf. 2004, 44, 585–594. [Google Scholar] [CrossRef]
- Pandey, P.M.; Thrimurthulu, K.; Reddy, N.V. Optimal Part Deposition Orientation in FDM by Using a Multicriteria Genetic Algorithm. Int. J. Prod. Res. 2004, 42, 4069–4089. [Google Scholar] [CrossRef]
- Kim, H.-C.; Lee, S.-H. Reduction of Post-Processing for Stereolithography Systems by Fabrication-Direction Optimization. Comput.-Aided Des. 2005, 37, 711–725. [Google Scholar] [CrossRef]
- Ahn, D.; Kim, H.; Lee, S. Fabrication Direction Optimization to Minimize Post-Machining in Layered Manufacturing. Int. J. Mach. Tools Manuf. 2007, 47, 593–606. [Google Scholar] [CrossRef]
- Canellidis, V.; Giannatsis, J.; Dedoussis, V. Genetic-Algorithm-Based Multi-Objective Optimization of the Build Orientation in Stereolithography. Int. J. Adv. Manuf. Technol. 2009, 45, 714–730. [Google Scholar] [CrossRef]
- Padhye, N.; Deb, K. Multi-objective Optimisation and Multi-criteria Decision Making in SLS Using Evolutionary Approaches. Rapid Prototyp. J. 2011, 17, 458–478. [Google Scholar] [CrossRef]
- Strano, G.; Hao, L.; Everson, R.M.; Evans, K.E. Multiobjective Optimisation of Selective Laser Sintering Processes for Surface Quality and Energy Saving. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2011, 225, 1673–1682. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y. A Unit Sphere Discretization and Search Approach to Optimize Building Direction with Minimized Volumetric Error for Rapid Prototyping. Int. J. Adv. Manuf. Technol. 2013, 67, 733–743. [Google Scholar] [CrossRef]
- Paul, R.; Anand, S. Optimization of Layered Manufacturing Process for Reducing Form Errors with Minimal Support Structures. J. Manuf. Syst. 2015, 36, 231–243. [Google Scholar] [CrossRef]
- Ezair, B.; Massarwi, F.; Elber, G. Orientation Analysis of 3D Objects toward Minimal Support Volume in 3D-Printing. Comput. Graph. 2015, 51, 117–124. [Google Scholar] [CrossRef]
- Luo, N.; Wang, Q. Fast Slicing Orientation Determining and Optimizing Algorithm for Least Volumetric Error in Rapid Prototyping. Int. J. Adv. Manuf. Technol. 2016, 83, 1297–1313. [Google Scholar] [CrossRef]
- Zhang, Y.; Bernard, A.; Harik, R.; Karunakaran, K.P. Build Orientation Optimization for Multi-Part Production in Additive Manufacturing. J. Intell. Manuf. 2017, 28, 1393–1407. [Google Scholar] [CrossRef]
- Brika, S.E.; Zhao, Y.F.; Brochu, M.; Mezzetta, J. Multi-Objective Build Orientation Optimization for Powder Bed Fusion by Laser. J. Manuf. Sci. Eng. 2017, 139, 111011. [Google Scholar] [CrossRef]
- Mi, S.; Wu, X.; Zeng, L. Optimal Build Orientation Based on Material Changes for FGM Parts. Int. J. Adv. Manuf. Technol. 2018, 94, 1933–1946. [Google Scholar] [CrossRef]
- Al-Ahmari, A.M.; Abdulhameed, O.; Khan, A.A. An Automatic and Optimal Selection of Parts Orientation in Additive Manufacturing. Rapid Prototyp. J. 2018, 24, 698–708. [Google Scholar] [CrossRef]
- Huang, R.; Dai, N.; Li, D.; Cheng, X.; Liu, H.; Sun, D. Parallel Non-Dominated Sorting Genetic Algorithm-II for Optimal Part Deposition Orientation in Additive Manufacturing Based on Functional Features. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 3384–3395. [Google Scholar] [CrossRef]
- Raju, M.; Gupta, M.K.; Bhanot, N.; Sharma, V.S. A Hybrid PSO–BFO Evolutionary Algorithm for Optimization of Fused Deposition Modelling Process Parameters. J. Intell. Manuf. 2019, 30, 2743–2758. [Google Scholar] [CrossRef]
- Golmohammadi, A.H.; Khodaygan, S. A Framework for Multi-Objective Optimisation of 3D Part-Build Orientation with a Desired Angular Resolution in Additive Manufacturing Processes. Virtual Phys. Prototyp. 2019, 14, 19–36. [Google Scholar] [CrossRef]
- Leirmo, T.S.; Martinsen, K. Deterministic Part Orientation in Additive Manufacturing Using Feature Recognition. Procedia CIRP 2020, 88, 405–410. [Google Scholar] [CrossRef]
- Nesting Algorithm for Optimization Part Placement in Additive Manufacturing. Available online: https://www.researchsquare.com (accessed on 4 October 2022).
- Lee, S.J.; Kim, B.S. Two-Stage Meta-Heuristic for Part-Packing and Build-Scheduling Problem in Parallel Additive Manufacturing. SSRN 2022. [Google Scholar] [CrossRef]
- Ma, Z.; Gao, M.; Guo, K.; Wang, Q.; Li, L.; Liu, C.; Zhu, G.; Liu, Z. Analysis and Optimization of Energy Consumption for Multi-Part Printing Using Selective Laser Melting and Considering the Support Structure. Int. J. Precis. Eng. Manuf.-Green Technol. 2022. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, X.; Stringer, J. Optimisation of Multi-Part Production in Additive Manufacturing for Reducing Support Waste. Virtual Phys. Prototyp. 2019, 14, 219–228. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, X.; Xiong, Y.; Tang, Y.; Dong, G.; Kim, S. A Novel Strategy for Multi-Part Production in Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2020, 109, 1237–1248. [Google Scholar] [CrossRef]
- Makanda, I.L.D.; Yang, M.; Shi, H.; Guo, W.; Jiang, P. A Multi-Part Production Planning System for a Distributed Network of 3D Printers under the Context of Social Manufacturing. Machines 2022, 10, 605. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Ha, S.; Ma, J.; Kim, N. Multi-Objective Optimization Analysis for Part-to-Printer Assignment in a Network of 3D Fused Deposition Modeling. J. Manuf. Syst. 2017, 43, 35–46. [Google Scholar] [CrossRef]
- Bible, T.E. PLA vs. ABS: Which Should I Use? Available online: https://engineersbible.com/pla-vs-abs/ (accessed on 9 October 2022).
- PLA vs. ABS: The Main Differences. Available online: https://all3dp.com/2/pla-vs-abs-filament-3d-printing/ (accessed on 9 October 2022).
- Hay, A. PLA vs. ABS: Which Filament Is Better for 3D Printing? Available online: https://jiga.io/resource-center/3d-printing/pla-vs-abs-which-is-better-for-3d-printing/ (accessed on 9 October 2022).
- HUBS 3D Printing with PLA vs. ABS: What’s the Difference? Available online: https://www.hubs.com/knowledge-base/pla-vs-abs-whats-difference/ (accessed on 9 October 2022).
- IEPASADMIN. Using PLA for Long-Term Outdoor Applications; ICDP: Boulder, CO, USA, 2013. [Google Scholar]
- Zhang, P.; Liu, J.; To, A.C. Role of Anisotropic Properties on Topology Optimization of Additive Manufactured Load Bearing Structures. Scr. Mater. 2017, 135, 148–152. [Google Scholar] [CrossRef]
- Khan, A.A.; Nasr, E.A.; Ahmari, A.A. An Independent CAPP System for Prismatic Parts. IJRAPIDM 2015, 5, 129. [Google Scholar] [CrossRef]
- Frank, D.; Fadel, G. Expert System-Based Selection of the Preferred Direction of Build for Rapid Prototyping Processes. J. Intell. Manuf. 1995, 6, 339–345. [Google Scholar] [CrossRef]
- Mian, S.H.; Al-Ahmari, A. Enhance Performance of Inspection Process on Coordinate Measuring Machine. Measurement 2014, 47, 78–91. [Google Scholar] [CrossRef]
- Paul, V.; Ganeshkumar, C.; Jayakumar, L. Performance Evaluation of Population Seeding Techniques of Permutation-Coded GA Traveling Salesman Problems Based Assessment: Performance Evaluation of Population Seeding Techniques of Permutation-Coded GA. IJAMC 2019, 10, 55–92. [Google Scholar] [CrossRef]
- Bhosale, K.C.; Pawar, P.J. Material Flow Optimisation of Production Planning and Scheduling Problem in Flexible Manufacturing System by Real Coded Genetic Algorithm (RCGA). Flex. Serv. Manuf. J. 2019, 31, 381–423. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A Review on Genetic Algorithm: Past, Present, and Future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lin, D.; Li, M.-Q. A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling Problem. In Proceedings of the 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; Volume 5, pp. 2945–2949. [Google Scholar]
- Andreica, A.; Chira, C. Best-Order Crossover for Permutation-Based Evolutionary Algorithms. Appl. Intell. 2015, 42, 751–776. [Google Scholar] [CrossRef]
- Rahmani Hosseinabadi, A.A.; Vahidi, J.; Saemi, B.; Sangaiah, A.K.; Elhoseny, M. Extended Genetic Algorithm for Solving Open-Shop Scheduling Problem. Soft Comput. 2019, 23, 5099–5116. [Google Scholar] [CrossRef]
- Xin, J.; Zhong, J.; Yang, F.; Cui, Y.; Sheng, J. An Improved Genetic Algorithm for Path-Planning of Unmanned Surface Vehicle. Sensors 2019, 19, 2640. [Google Scholar] [CrossRef] [Green Version]
- Gen, M.; Cheng, R. Genetic Algorithms and Engineering Design; John Wiley & Sons: New York, NY, USA, 1997; ISBN 978-0-471-12741-3. [Google Scholar]
- Jebari, K.; Madiafi, M. Selection Methods for Genetic Algorithms. Int. J. Emerg. Sci. 2013, 3, 333–344. [Google Scholar]
- Yang, X.-S.; Chien, S.F.; Ting, T.O. Chapter 1—Bio-Inspired Computation and Optimization: An Overview. In Bio-Inspired Computation in Telecommunications; Yang, X.-S., Chien, S.F., Ting, T.O., Eds.; Morgan Kaufmann: Boston, MA, USA, 2015; pp. 1–21. ISBN 978-0-12-801538-4. [Google Scholar]
- Hammad Mian, S.; Abdul Mannan, M.; Al-Ahmari, A.M. The Influence of Surface Topology on the Quality of the Point Cloud Data Acquired with Laser Line Scanning Probe. Sens. Rev. 2014, 34, 255–265. [Google Scholar] [CrossRef]
Author | Year | Adopted Techniques | Optimization Objectives |
---|---|---|---|
[41] | 1995 | Weighted Sum Function (WSF) | Part Accuracy (PA); Build Time (BT) |
[42] | 1997 | Self-Developed Algorithm (SDA) | Surface Quality (SQ); BT; Support Structure Volume (SS) |
[43] | 1998 | SDA | Cost (CC); SS; Contact Area with Support |
[44] | 1998 | SDA | BT; PA; SQ |
[45] | 1998 | GA | PA; BT; SS |
[15] | 1999 | SDA | CC; BT; PA; SQ |
[46] | 2001 | GA | BT; SQ |
[47] | 2003 | GA | Volumetric Error (VE) |
[48] | 2004 | GA | SQ; BT |
[49] | 2004 | GA | SQ; BT |
[50] | 2005 | GA | Post-Processing Time (PPT) and CC |
[51] | 2007 | GA | PPT |
[52] | 2009 | GA | BT; SQ; PPT |
[53] | 2011 | GA and Particle Swarm Algorithm (PSO) | SQ; BT |
[54] | 2011 | GA | SQ; Energy Consumption |
[55] | 2013 | GA | VE |
[56] | 2015 | GA | Cylindricity and Flatness Errors; SS |
[57] | 2015 | SDA | SS |
[58] | 2016 | Principal Component Analysis | VE |
[59] | 2017 | GA | BT; CC; Production Quality |
[60] | 2017 | GA | SQ; BT; CC; Yield Strength; Tensile Strength |
[27] | 2017 | GA | SS; Support Structure Accessibility |
[61] | 2018 | Point Clustering Algorithm | Count of Material Changes |
[62] | 2018 | WSF | GD&T Values; Production Time |
[63] | 2018 | GA | Adaptive Feature Roughness; BT |
[64] | 2018 | Hybrid PSO-BFO Algorithm | Hardness; Flexural Modulus; Tensile Strength; SQ |
[65] | 2019 | Taguchi Method | SS; SQ |
[66] | 2020 | Non-Stochastic Feature Recognition Approach | Staircase Effect |
[67] | 2021 | Nesting Algorithm | CC and BT |
[68] | 2022 | Mixed integer linear programming, GA, and PSO | Make span |
[69] | 2022 | SDA | Material and Energy Consumption |
Orientation | Description |
---|---|
1 | Bottom face is the base surface and θ = 0° |
2 | Top face is the base surface and θ = 180° |
3 | Front face is the base surface and θ = 90° (XZ plane, rotated along X-axis, counterclockwise) |
4 | Rear face is the base surface and θ = 90° (XZ plane, rotated along X-axis, clockwise) |
5 | Right face is the base surface and θ = 90° (YZ plane, rotated along Y-axis, clockwise) |
6 | Left face is the base surface and θ = 90° (YZ plane, rotated along Y-axis, counterclockwise) |
Chromosomes | Objective Function Value (Z) | Fitness Function Value (f) | Probability of Each Chromosome (pi) | Cumulative Probability (Pi) | Random Number | Selection | |
---|---|---|---|---|---|---|---|
I | 2 1 3 4 2 3 | 12.80 | 12.80 | 0.30 | 0.30 | 0.57 | II |
II | 4 6 2 3 1 1 | 13.69 | 13.69 | 0.32 | 0.61 | 0.30 | I |
III | 3 4 5 1 2 4 | 16.78 | 16.78 | 0.39 | 1.00 | 0.09 | I |
Σ f | 43.27 |
Component | Description | Dimension (mm) |
---|---|---|
Component 1 | Prismatic part and features. Fifty-seven faces, along with their loops, edges, vertices, face orientation, face type, and face area. Fourteen manufacturing features. | 70 × 20 × 55 |
Component 2 | Prismatic part and features. Seventy-two faces, including their loops, edges, vertices, face direction, face type, and the face area. Twelve manufacturing features. | 49.5 × 63 × 18 |
Component 3 | Prismatic part and features. Eighty-nine faces, along with their loops, edges, vertices, face direction, face type, and the face area. Twenty-six manufacturing features. | 49 × 49.5 × 16 |
Component 4 | The freeform surface is a Non-Uniform Rational B-Spline (NURBS). | 52.5 × 48 × 27.047 |
Component 5 | Rotational part comprising different internal and external features (symmetric in nature). | 27.988 × 27.988 × 40.882 |
Component 6 | The prismatic part contains different features such as pocket through, pocket blind, hole through, and external cylinders. | 33 × 32 × 10 |
Component 7 | Combination of prismatic and freeform surfaces which include through holes on the left surface. | 31.287 × 50 × 46.8 |
Component 8 | The real part is a car gearbox (with four-speed and reverse transaxle). | 82.44 × 51.588 × 43.484 |
Component 9 | The prismatic part includes different features such as the staircase and step through. | 20 × 60 × 20 |
Orientation | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Criteria | Q | T | Q | T | Q | T | Q | T | Q | T | Q | T |
Component 1 | 31.662 | 3.24 | 16.302 | 3.35 | 44.429 | 4.560 | 44.428 | 4.560 | 26.108 | 5.110 | 26.107 | 5.110 |
Component 2 | 52.623 | 2.21 | 34.512 | 2.28 | 29.140 | 3.320 | 29.130 | 3.320 | 29.743 | 4.070 | 29.744 | 4.070 |
Component 3 | 86.560 | 2.17 | 45.380 | 2.26 | 46.915 | 3.300 | 46.914 | 3.300 | 55.655 | 3.210 | 55.654 | 3.210 |
Component 4 | 1.400 | 1.34 | −1.000 | 1.27 | 1.400 | 0.170 | 6.500 | 0.170 | 1.400 | 0.240 | 1.400 | 1.000 |
Component 5 | 5.208 | 1.21 | 0.973 | 1.34 | −1.506 | 1.520 | −1.506 | 1.520 | −1.506 | 1.520 | −1.506 | 1.520 |
Component 6 | 12.114 | 0.35 | 7.126 | 0.46 | 11.118 | 1.060 | 11.582 | 1.110 | 10.780 | 1.150 | 11.708 | 1.120 |
Component 7 | 4.553 | 3.08 | −8.811 | 3.12 | −9.855 | 3.090 | −8.438 | 3.170 | 6.401 | 3.060 | 6.439 | 2.590 |
Component 8 | 4.200 | 9.31 | 4.100 | 9.29 | 4.000 | 8.050 | 3.875 | 8.040 | 4.500 | 8.570 | 4.575 | 9.360 |
Component 9 | 4.140 | 2.16 | 4.140 | 2.10 | 3.646 | 1.370 | 6.547 | 1.170 | 7.403 | 1.200 | 7.403 | 1.200 |
Components | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Average Maximum Deviation (mm) | 0.15 | 0.11 | 0.10 | 0.17 | 0.09 | 0.13 | 0.13 | 0.16 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulhameed, O.; Mian, S.H.; Moiduddin, K.; Al-Ahmari, A.; Ahmed, N.; Aboudaif, M.K. A Multi-Part Orientation Planning Schema for Fabrication of Non-Related Components Using Additive Manufacturing. Micromachines 2022, 13, 1777. https://doi.org/10.3390/mi13101777
Abdulhameed O, Mian SH, Moiduddin K, Al-Ahmari A, Ahmed N, Aboudaif MK. A Multi-Part Orientation Planning Schema for Fabrication of Non-Related Components Using Additive Manufacturing. Micromachines. 2022; 13(10):1777. https://doi.org/10.3390/mi13101777
Chicago/Turabian StyleAbdulhameed, Osama, Syed Hammad Mian, Khaja Moiduddin, Abdulrahman Al-Ahmari, Naveed Ahmed, and Mohamed K. Aboudaif. 2022. "A Multi-Part Orientation Planning Schema for Fabrication of Non-Related Components Using Additive Manufacturing" Micromachines 13, no. 10: 1777. https://doi.org/10.3390/mi13101777
APA StyleAbdulhameed, O., Mian, S. H., Moiduddin, K., Al-Ahmari, A., Ahmed, N., & Aboudaif, M. K. (2022). A Multi-Part Orientation Planning Schema for Fabrication of Non-Related Components Using Additive Manufacturing. Micromachines, 13(10), 1777. https://doi.org/10.3390/mi13101777