Stretchable Filler/Solid Rubber Piezoresistive Thread Sensor for Gesture Recognition
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
4.1. Fabrication of the Stretchable Piezoresistive Sensor
4.2. Measurement System
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gong, H.; Xu, Z.; Yang, Y.; Xu, Q.; Guo, W.J.B. Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosens. Bioelectron. 2020, 169, 112567. [Google Scholar] [CrossRef]
- Zhao, M.; Li, D.; Huang, J.; Wang, D.; Mensah, A.; Wei, Q. A multifunctional and highly stretchable electronic device based on silver nanowire/wrap yarn composite for a wearable strain sensor and heater. J. Mater. Chem. C 2019, 7, 13468–13476. [Google Scholar] [CrossRef]
- Min, S.K.; Kim, K.; Kwon, D.; Kim, S.; Park, I. Microdome-Induced Strain Localization for Biaxial Strain Decoupling toward Stretchable and Wearable Human Motion Detection. Langmuir 2020, 36, 8939–8946. [Google Scholar]
- Jeong, S.; Heo, S.; Kang, M.; Kim, H.J. Mechanical durability enhancement of gold-nanosheet stretchable electrodes for wearable human bio-signal detection. Mater. Des. 2020, 196, 109178. [Google Scholar] [CrossRef]
- Lu, X.; Wang, W.; Wang, Z.L.; Sun, C. Stretchable, Transparent Triboelectric Nanogenerator as a Highly Sensitive Self-Powered Sensor for Driver Fatigue and Distraction Monitoring. Nano Energy 2020, 78, 105359. [Google Scholar] [CrossRef]
- Duan, L.; D’Hooge, D.R.; Cardon, L. Recent progress on flexible and stretchable piezoresistive strain sensors: From design to application. Prog. Mater. Sci. 2019, 114, 100617. [Google Scholar] [CrossRef]
- He, J.; Xie, Z.; Yao, K.; Li, D.; Yu, X.J. Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy 2021, 81, 105590. [Google Scholar] [CrossRef]
- Hza, B.; Yue, Z.; Ye, Q.; Hw, D.; Wq, A.; Yl, E.; Qy, A.; Hc, B. Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens. Bioelectron. 2020, 168, 112569. [Google Scholar]
- Jeongjae, R.; Jaegyu, K.; Jinwon, O.; Seongjin, L.; Joo, Y.S.; Jessie, S.; Kwangsoo, N.; Steve, P.; Seungbum, H. Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability. Nano Energy 2019, 55, 348–353. [Google Scholar]
- Liu, Y.; Wang, L.; Zhao, L.; Yao, K.; Xie, Z.; Zi, Y.; Yu, X. Thin, Skin-Integrated, Stretchable Triboelectric Nanogenerators for Tactile Sensing. Adv. Electron. Mater. 2020, 6, 1901174. [Google Scholar] [CrossRef]
- Li, J.; Fang, L.; Sun, B.; Li, X.; Kang, S.H. Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. J. Electrochem. Soc. 2020, 167, 037561. [Google Scholar] [CrossRef]
- Qi, K.; Zhou, Y.; Ou, K.; Dai, Y.; You, X.; Wang, H.; He, J.; Qin, X.; Wang, R. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor. Carbon 2020, 170, 464–476. [Google Scholar] [CrossRef]
- Su, Y.; Xie, G.; Wang, S.; Tai, H.; Zhang, Q.; Du, H.; Zhang, H.; Du, X.; Jiang, Y. Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sensors Actuators B Chem. 2017, 251, 144–152. [Google Scholar] [CrossRef]
- Wang, P.; Lun, P.; Wang, J.; Xu, M.; Dai, G.; Zou, H.; Dong, K.; Wang, Z.L. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor. ACS Nano 2018, 12, 9433–9440. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Wang, J.; Kang, W.; Cui, M.; Wang, X.; Foo, C.Y.; Chee, K.J.; Lee, P.S. Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors. Adv. Mater. 2014, 26, 2022–2027. [Google Scholar] [CrossRef]
- Christ, J.; Aliheidari, N.; Pötschke, P.; Ameli, A. Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Polymers 2018, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.; Hong, S.K.; Kim, M.S.; Cho, S.J.; Lim, G. Omni-purpose stretchable strain sensor based on a highly dense nanocracking structure for whole-body motion monitoring. ACS Appl. Mater. Interfaces 2017, 9, 41712–41721. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Ju, Y.K.; Jo, Y.; Kim, H.S.; Jung, S.M.; Su, Y.L.; Choi, Y.; Jeong, S. Three-dimensionally printed pressure sensor arrays from hysteresis-less stretchable piezoresistive composites. RSC Adv. 2019, 9, 39993–40002. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Heo, J.S.; Lee, K.W.; Shin, J.C.; Spark, S.K. Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture. Sensors 2020, 20, 6588. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, L.; Mei, D.; Zhu, W. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites. J. Mater. Chem. C 2019, 7, 8669–8679. [Google Scholar] [CrossRef]
- Ahuja, P.; Ujjain, S.K.; Urita, K.; Furuse, A.; Moriguchi, I.; Kaneko, K. Chemically and mechanically robust SWCNT based strain sensor with monotonous piezoresistive response for infrastructure monitoring. Chem. Eng. J. 2020, 388, 124174. [Google Scholar] [CrossRef]
- Davoodi, E.; Montazerian, H.; Haghniaz, R.; Rashidi, A.; Toyserkani, E. 3D-Printed Ultra-Robust Surface-Doped Porous Silicone Sensors for Wearable Biomonitoring. ACS Nano 2020, 14, 1520–1532. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Jin, X.; Han, X.; Li, Y.; Wang, W.; Lin, T.; Zhu, Z. Synergy of Porous Structure and Microstructure in Piezoresistive Material for High-Performance and Flexible Pressure Sensors. ACS Appl. Mater. Interfaces 2021, 13, 19211–19220. [Google Scholar] [CrossRef]
- Wang, L.; Wu, F.; Wang, Y. Coplanar-Electrodes-Based Differential Structure for Piezoresistive Sensor Made of Carbon Nanotube Filled Silicone Rubber Composite. IEEE Sens. J. 2017, 18, 1403–1409. [Google Scholar] [CrossRef]
- Zhai, W.; Xia, Q.; Zhou, K.; Yue, X.; Ren, M.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Multifunctional Flexible Carbon Black/Polydimethylsiloxane Piezoresistive Sensor with Ultrahigh Linear Range, Excellent Durability and Oil/Water Separation Capability. Chem. Eng. J. 2019, 372, 373–382. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, B.; Yang, K.; Wang, C. A low-cost piezoresistive pressure sensor with a wide strain range–Featuring polyurethane sponge@poly(vinyl alcohol)/sulfuric gel electrolyte. J. Mater. Chem. C 2021, 9, 1014–1024. [Google Scholar] [CrossRef]
- He, Y.; Zhao, L.; Zhang, J.; Liu, L.; Liu, H.; Liu, L. A breathable, sensitive and wearable piezoresistive sensor based on hierarchical micro-porous PU@CNT films for long-term health monitoring. Compos. Sci. Technol. 2020, 200, 108419. [Google Scholar] [CrossRef]
- Kim, T.K.; Kim, J.K.; Jeong, O.C. Measurement of nonlinear mechanical properties of PDMS elastomer. Microelectron. Eng. 2011, 88, 1982–1985. [Google Scholar] [CrossRef]
- Fu, X.; Maximiano, R.; Ahmed, M.; Ata, M.; Huang, X. Stretchable strain sensor facilely fabricated based on multi-wall carbon nanotube composites with excellent performance. J. Mater. Sci. 2019, 54, 2170–2180. [Google Scholar] [CrossRef]
- Shankar, B.M.; Kulkarni, S.M. Influences of dielectric and conductive fillers on dielectric and mechanical properties of solid silicone rubber composites. Iran. Polym. J. 2019, 28, 563–573. [Google Scholar] [CrossRef]
- Chou, X.; Zhu, J.; Qian, S.; Niu, X.; Qian, J.; Hou, X.; Mu, J.; Geng, W.; Cho, J.; He, J.; et al. All-in-one filler-elastomer- based high-performance stretchable piezoelectric nanogenerator for kinetic energy harvesting and self-powered motion monitoring. Nano Energy 2018, 53, 550–558. [Google Scholar] [CrossRef]
- Zhu, J.; Qian, J.; Hou, X.; He, J.; Niu, X.; Geng, W.; Mu, J.; Zhang, W.; Chou, X. High-performance stretchable PZT particles/Cu@Ag Branch nanofibers composite piezoelectric nanogenerator for self-powered body motion monitoring. Smart Mater. Struct. 2019, 28, 095014. [Google Scholar] [CrossRef]
- Xu, S.; Li, X.; Sui, G.; Du, R.; Zhang, Q.; Fu, Q. Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability. Chem. Eng. J. 2019, 381, 122666. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Yang, S.; Shi, X.; Zhang, D.; Shan, C.; Mi, L.; Liu, C.; Shen, C.; Guo, Z. Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with Cracked Cellulose Nanofibril/Silver Nanowire Layer. ACS Appl. Mater. Interfaces 2019, 11, 10922–10932. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, P.; Zhu, J.; Xue, X.; Song, Y. Stretchable Filler/Solid Rubber Piezoresistive Thread Sensor for Gesture Recognition. Micromachines 2022, 13, 7. https://doi.org/10.3390/mi13010007
Zhu P, Zhu J, Xue X, Song Y. Stretchable Filler/Solid Rubber Piezoresistive Thread Sensor for Gesture Recognition. Micromachines. 2022; 13(1):7. https://doi.org/10.3390/mi13010007
Chicago/Turabian StyleZhu, Penghua, Jie Zhu, Xiaofei Xue, and Yongtao Song. 2022. "Stretchable Filler/Solid Rubber Piezoresistive Thread Sensor for Gesture Recognition" Micromachines 13, no. 1: 7. https://doi.org/10.3390/mi13010007
APA StyleZhu, P., Zhu, J., Xue, X., & Song, Y. (2022). Stretchable Filler/Solid Rubber Piezoresistive Thread Sensor for Gesture Recognition. Micromachines, 13(1), 7. https://doi.org/10.3390/mi13010007