FIB-Assisted Fabrication of Single Tellurium Nanotube Based High Performance Photodetector
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Sample Characterization
2.3. Fabrication of Individual Te Nanotube Photodetector Assisted by FIB Technique
3. Results and Discussion
3.1. Structural Analysis of Te Nanotubes
3.2. Morphology and Microstructure of Te Nanotubes
3.3. Photoelectric Properties of Individual Te Nanotube Photodevice
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, Y.; Kim, J.; Kim, H.-M.; Jang, J. Quantum-Dots Photosensor with Wide Bandgap P-Type and N-Type Oxide Semiconductors for High Detectivity and Responsivity. Adv. Mater. Technol. 2020, 5, 1900857. [Google Scholar] [CrossRef]
- Dan, Y.; Zhao, X.; Chen, K.; Mesli, A. A Photoconductor Intrinsically Has No Gain. ACS Photonics 2018, 5, 4111–4116. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, W.-G.; Kang, B.H.; Kim, H.T.; Park, J.W.; Choi, D.H.; Kim, T.S.; Lim, J.H.; Kim, H.J. High Photosensitive Indium-Gallium-Zinc Oxide Thin-Film Phototransistor with a Selenium Capping Layer for Visible-Light Detection. ACS Appl. Mater. Interfaces 2020, 12, 10673–10680. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, B.; Hongfei, L.U.; Yang, K.; Chen, L.; Zhang, G.; Fan, X. Development of Photoelectric Detecting Circuit for Tdlas Type C_2h_2 Gas Detection System. Laser J. 2018, 39, 15–18. [Google Scholar]
- Wang, W.; Liu, J.; Li, X.; Jiang, Q.; Xu, J.; Luo, C.; Liu, P.; Tan, R.; Du, Y.; Jiang, F. Galvanic Exchange Reaction Involving Te Nanowires and Ag Ions for N-Type Te/Ag2Te Thermoelectric Nanofilms. J. Nanopart. Res. 2019, 21, 131. [Google Scholar] [CrossRef]
- Kang, S.; Dai, T.; Ma, X.; Dang, S.; Li, H.; Hu, P.; Yu, F.; Zhou, X.; Wu, S.; Li, S. Broad Spectral Response of an Individual Tellurium Nanobelt Grown by Molecular Beam Epitaxy. Nanoscale 2019, 11, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Guascito, M.R.; Chirizzi, D.; Filippo, E.; Milano, F.; Tepore, A. Synthesis and Characterization of Te Nanotubes Decorated with Pt Nanoparticles for a Fuel Cell Anode/Cathode Working at a Neutral Ph. Catalysts 2019, 9, 328. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Yasin, G.; Ahmad, A.; Qin, L.; Yuan, Q.; Khan, A.U.; Khan, U.A.; Rahman, A.U.; Slimani, Y. Construction of Well-Designed 1D Selenium-Tellurium Nanorods Anchored on Graphene Sheets as a High Storage Capacity Anode Material for Lithium-Ion Batteries. Inorg. Chem. Front. 2020, 7, 1750–1761. [Google Scholar] [CrossRef]
- Li, H.H.; Zhang, P.; Liang, C.L.; Yang, J.; Zhou, M.; Lu, X.H.; Hope, G.A. Facile Electrochemical Synthesis of Tellurium Nanorods and Their Photoconductive Properties. Cryst. Res. Technol. 2012, 47, 1069–1074. [Google Scholar] [CrossRef]
- Zhong, B.N.; Fei, G.T.; Fu, W.B.; Gong, X.X.; Xu, S.H.; Gao, X.D.; Zhang, L.D. Controlled Solvothermal Synthesis of Single-Crystal Tellurium Nanowires, Nanotubes and Trifold Structures and Their Photoelectrical Properties. Crystengcomm 2017, 19, 2813–2820. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, X.; Zhang, Z.; Hu, C.; Zhang, H. Facile Fabrication of Highly Uniform Tellurium Nanorods for Self-Powered Flexible Optoelectronics. Adv. Electron. Mater. 2020, 6, 2000240. [Google Scholar] [CrossRef]
- Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Jiangbo, Z.; Ning, X.; Hongzhi, C.; King, L.; Yilun, L. Carbon Nanotube Based Infrared Detector Array. In Proceedings of the 2008 8th IEEE Conference on Nanotechnology, Arlington, TX, USA, 18–21 August 2008; IEEE: Piscatway, NJ, USA, 2008; pp. 100–103. [Google Scholar]
- Fabrega, C.; Hernandez-Ramirez, F.; Daniel Prades, J.; Jimenez-Diaz, R.; Andreu, T.; Ramon Morante, J. On the Photoconduction Properties of Low Resistivity TiO2 Nanotubes. Nanotechnology 2010, 21, 445703. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, R.; Zhou, Z.; Ye, X. Contact Behaviors between Zinc Oxide Nanowires and Metal Electrodes. J. Nanosci. Nanotechnol. 2009, 9, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. High-Pressure Phases of Crystalline Tellurium: A Combined Raman and Ab Initio Study. Phys. Rev. B 2012, 86, 064103. [Google Scholar] [CrossRef]
- Vasileiadis, T.; Dracopoulos, V.; Kollia, M.; Yannopoulos, S.N. Laser-Assisted Growth of T-Te Nanotubes and Their Controlled Photo-Induced Unzipping to Ultrathin Core-Te/Sheath-TeO2 Nanowires. Sci. Rep. 2013, 3, 1209. [Google Scholar] [CrossRef]
- Pine, A.S.; Dresselhaus, G. Raman Spectra and Lattice Dynamics of Tellurium. Phys. Rev. B 1971, 4, 356–371. [Google Scholar] [CrossRef]
- Liu, J.-W.; Xu, J.; Hu, W.; Yang, J.-L.; Yu, S.-H. Systematic Synthesis of Tellurium Nanostructures and Their Optical Properties: From Nanoparticles to Nanorods, Nanowires, and Nanotubes. ChemNanoMat 2016, 2, 167–170. [Google Scholar] [CrossRef]
- Silva, R.R.; Mejia, H.A.G.; Ribeiro, S.J.L.; Shrestha, L.K.; Ariga, K.; Oliveira, O.N., Jr.; Camargo, V.R.; Maia, L.J.Q.; Araujo, C.B. Facile Synthesis of Tellurium Nanowires and Study of Their Third-Order Nonlinear Optical Properties. J. Braz. Chem. Soc. 2017, 28, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J.-B.; Li, S.-S.; Li, J.; Wei, S.-H. Layer-Dependent Electrical and Optoelectronic Responses of ReSe2 Nanosheet Transistors. Nanoscale 2014, 6, 7226–7231. [Google Scholar] [CrossRef]
- Chen, G.; Yu, Y.; Zheng, K.; Ding, T.; Wang, W.; Jiang, Y.; Yang, Q. Fabrication of Ultrathin Bi2S3 Nanosheets for High-Performance, Flexible, Visible-Nir Photodetectors. Small 2015, 11, 2848–2855. [Google Scholar] [CrossRef] [PubMed]
- Kind, H.; Yan, H.Q.; Messer, B.; Law, M.; Yang, P.D. Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 2002, 14, 158–160. [Google Scholar] [CrossRef]
- Guo, N.; Hu, W.; Liao, L.; Yip, S.; Ho, J.C.; Miao, J.; Zhang, Z.; Zou, J.; Jiang, T.; Wu, S.; et al. Anomalous and Highly Efficient Inas Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature. Adv. Mater. 2014, 26, 8203–8209. [Google Scholar] [CrossRef]
- Jin, B.; Huang, P.; Zhang, Q.; Zhou, X.; Zhang, X.; Li, L.; Su, J.; Li, H.; Zhai, T. Self-Limited Epitaxial Growth of Ultrathin Nonlayered CdS Flakes for High-Performance Photodetectors. Adv. Funct. Mater. 2018, 28, 1800181. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Wu, J.-M.; Lin, S.-J.; Chang, W.-C. High Sensitivity of Middle-Wavelength Infrared Photodetectors Based on an Individual InSb Nanowire. Nanoscale Res. Lett. 2013, 8, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, D.; Wang, J.; Hu, W.; Liao, L.; Fang, H.; Guo, N.; Wang, P.; Gong, F.; Wang, X.; Fan, Z.; et al. When Nanowires Meet Ultrahigh Ferroelectric Field-High-Performance Full-Depleted Nanowire Photodetectors. Nano Lett. 2016, 16, 2548–2555. [Google Scholar] [CrossRef] [PubMed]
- Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.A.; Aplin, D.P.R.; Park, J.; Bao, X.Y.; Lo, Y.H.; Wang, D. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Lett. 2007, 7, 1003–1009. [Google Scholar] [CrossRef]
- Liu, X.; Gu, L.; Zhang, Q.; Wu, J.; Long, Y.; Fan, Z. All-Printable Band-Edge Modulated ZnO Nanowire Photodetectors with Ultra-High Detectivity. Nat. Commun. 2014, 5, 4007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, B.; Liu, Q.; Yang, W.; Xiong, C.; Li, J.; Jiang, X. Ultrasensitive and Highly Selective Photodetections of UV-A Rays Based on Individual Bicrystalline Gan Nanowire. ACS Appl. Mater. Interfaces 2017, 9, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Tan, Q.; Zhang, Z.; Wang, Q.; Feng, X.; Liu, Y. Photoconductive Properties of Er-CdSe Nanobelt Detectors. J. Mater. Sci. 2019, 54, 560–570. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, L.; Wang, J.; Tian, W.; Zhai, W.; Wei, B. Self-Powered Broadband Schottky Junction Photodetector Based on a Single Selenium Microrod. J. Phys. Chem. C 2019, 123, 21244–21251. [Google Scholar] [CrossRef]
- Cheng, R.; Wen, Y.; Yin, L.; Wang, F.; Wang, F.; Liu, K.; Shifa, T.A.; Li, J.; Jiang, C.; Wang, Z.; et al. Ultrathin Single-Crystalline CdTe Nanosheets Realized Via Van Der Waals Epitaxy. Adv. Mater. 2017, 29, 1703122. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Wang, Q.; Yin, L.; Liu, Q.; Wang, F.; Wang, F.; Wang, Z.; Liu, K.; Xu, K.; Huang, Y.; et al. Epitaxial 2D PbS Nanoplates Arrays with Highly Efficient Infrared Response. Adv. Mater. 2016, 28, 8051–8057. [Google Scholar] [CrossRef] [PubMed]
Photodetector | Iphoto/Idark | θ (IP = aPθ) | Gain (%) | Responsivity (AW−1) | References |
---|---|---|---|---|---|
Te NT | 331 | 0.76 | 5.0 × 106 | 1.65 × 104 | this work |
Er-CdSe NB | 2.21 × 104 | 0.603 | 3.87 × 105 | 2.17 × 103 | [31] |
CdS FL | 103 | 0.76 | 55.87 | 0.18 | [25] |
Se NR | — | 0.57 | 88.4 | 0.408 | [32] |
CdTe NS | 27 | — | — | 6.0 ×10−4 | [33] |
PbS | <2 | — | — | 1.6 × 103 | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Lu, Y.; Lei, W.; Sui, F.; Ma, R.; Qi, R.; Huang, R. FIB-Assisted Fabrication of Single Tellurium Nanotube Based High Performance Photodetector. Micromachines 2022, 13, 11. https://doi.org/10.3390/mi13010011
Xu W, Lu Y, Lei W, Sui F, Ma R, Qi R, Huang R. FIB-Assisted Fabrication of Single Tellurium Nanotube Based High Performance Photodetector. Micromachines. 2022; 13(1):11. https://doi.org/10.3390/mi13010011
Chicago/Turabian StyleXu, Wangqiong, Ying Lu, Weibin Lei, Fengrui Sui, Ruru Ma, Ruijuan Qi, and Rong Huang. 2022. "FIB-Assisted Fabrication of Single Tellurium Nanotube Based High Performance Photodetector" Micromachines 13, no. 1: 11. https://doi.org/10.3390/mi13010011