Design and Performance Evaluation of a Single-Phase Driven Ultrasonic Motor Using Bending-Bending Vibrations
Abstract
:1. Introduction
2. Structure and Working Principle of the Single-Phase-Driven Ultrasonic Motor
3. Finite Element Analysis of the Single-Phase-Driven Ultrasonic Motor
4. Mechanical Characteristics of the Single-Phase-Driven Ultrasonic Motor
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, J.; Liu, Y.; Zhao, L.; Xu, D.; Chen, W.; Deng, J. Design and experiments of a single-foot linear piezoelectric actuator operated in a stepping mode. IEEE Trans. Ind. Electron. 2018, 65, 8063–8071. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Gu, Z.; Quan, Q.; Deng, J. Development of a two-dimensional linear piezoelectric stepping platform using longitudinalbending hybrid actuators. IEEE Trans. Ind. Electron. 2018, 6, 3030–3040. [Google Scholar]
- Liu, Y.; Yan, J.; Wang, L.; Chen, W. A two-DOF ultrasonic motor using a longitudinal–bending hybrid sandwich transducer. IEEE Trans. Ind. Electron. 2018, 66, 3041–3050. [Google Scholar] [CrossRef]
- Wan, X.; Liu, M.; Zhang, X.; Fan, H.; Mao, Q.; Dong, M.; Wang, X.; Ma, H. Excitation and propagation of longitudinal l (0, 2) mode ultrasonic guided waves for the detection of damages in hexagonal pipes: Numerical and experimental studies. Shock Vib. 2021, 2021, 6641828. [Google Scholar]
- Lok, M.; Helbling, E.F.; Zhang, X.; Wood, R.; Brooks, D.; Wei, G.Y. A low mass power electronics unit to drive piezoelectric actuators for flying microrobots. IEEE Trans. Power Electron. 2017, 33, 3180–3191. [Google Scholar] [CrossRef]
- Tao, K.; Chen, Z.; Yi, H.; Zhang, R.; Shen, Q.; Wu, J.; Tang, L.; Fan, K.; Fu, Y.; Miao, J.; et al. Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting. Nano-Micro Lett. 2021, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, K.; Tamura, H.; Masuda, K.; Takano, T. Single-phase drive ultrasonic linear motor using a linked twin square plate vibrator. Jpn. J. Appl. Phys. 2013, 52, 07HE03. [Google Scholar] [CrossRef]
- Tian, X.; Liu, Y.; Deng, J.; Chen, W. Single-phase drive bending-bending piezoelectric actuator operated under 8-shaped trajectory vibration: Concept, computation and experiment evaluation. Mech. Syst. Signal Process. 2020, 139, 106637. [Google Scholar] [CrossRef]
- Cao, T.; Li, X.; Wen, Z.; Wang, B.; Liu, W.; Yu, D.; Wu, D. A CFRP/PZT laminated piezoelectric motor with high force density. Smart Mater. Struct. 2021, 30, 075005. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, L.; Jin, J. A novel robotic arm driven by sandwich piezoelectric transducers. Ultrasonics 2018, 84, 373–381. [Google Scholar] [CrossRef]
- Aoyagi, M.; Tomikawa, Y. Ultrasonic rotary motor using longitudinal and bending multimode vibrator with mode coupling caused by external additional asymmetry. Jpn. J. Appl. Phys. 1993, 32, 4190. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Nakamura, K.; Ueha, S. A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor. Sens. Actuators A Phys. 2011, 169, 206–210. [Google Scholar] [CrossRef]
- Takemura, K.; Ohno, Y.; Maeno, T. Design of a plate type multi-DOF ultrasonic motor and its self-oscillation driving circuit. IEEE/ASME Trans. Mechatron. 2004, 9, 474–480. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, S.; Li, C.; Chen, W.; Liu, J. A novel standing wave linear piezoelectric actuator using the longitudinal-bending coupling mode. Sens. Actuators A Phys. 2016, 251, 119–125. [Google Scholar] [CrossRef]
- Flueckiger, M.; Fernandez, J.; Giljum, M.; Perriard, Y. Optimization of a single phase ultrasonic linear motor. Proc. IEEE Ultrason. Symp. 2007, 2327–2330. [Google Scholar]
- Wang, L.; Wang, X.; Twiefel, J.; Jin, J.; Xu, Q. Design of a novel surface-bonded type of linear ultrasonic motor with single-phase excitation. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE), Hong Kong, China, 20–21 August 2020; pp. 1078–1083. [Google Scholar]
- Shi, Y.; Zhao, C. A new standing-wave-type linear ultrasonic motor based on in-plane modes. Ultrasonics 2011, 51, 397–404. [Google Scholar] [CrossRef]
- Lim, K.J.; Kwon, O.D.; Park, C.H.; Lee, J.S.; Kang, S.H. The design and characteristics of a novel ultrasonic motor. Mater. Sci. Forum 2006, 514, 1457–1461. [Google Scholar] [CrossRef]
- Yun, C.H.; Ishii, T.; Nakamura, K.; Ueha, S.; Akashi, K. A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped Langevin type transducer. Jpn. J. Appl. Phys. 2001, 40, 3773. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, W.; Liu, Y.; Liu, J.; Jiang, Q. A frog-shaped linear piezoelectric actuator using first-order longitudinal vibration mode. IEEE Trans. Ind. Electron. 2016, 64, 2188–2195. [Google Scholar] [CrossRef]
- Yamaguchi, D.; Kanda, T.; Suzumori, K. An ultrasonic motor for cryogenic temperature using bolt-clamped Langevin-type transducer. Sens. Actuators A Phys. 2012, 184, 134–140. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Y.; Liu, J.; Chen, W. A bonded type ultrasonic motor using the bending of a crossbeam. IEEE Access. 2016, 4, 1109–1116. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Chen, W.; Yao, Y. A high power linear ultrasonic motor using a bending bolt-clamped transducer. Ferroelectrics 2013, 445, 39–50. [Google Scholar] [CrossRef]
PZT41 | Aluminum Alloy |
---|---|
Piezoelectric matrix | Density ρ = 2810 kg/m3 |
Stiffness matrix | Poisson’s ratio μ = 0.33 |
Dielectric matrix | Modulus of elasticity E = 4.72 GPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, D.; Yang, W.; Zhang, X.; Yu, S. Design and Performance Evaluation of a Single-Phase Driven Ultrasonic Motor Using Bending-Bending Vibrations. Micromachines 2021, 12, 853. https://doi.org/10.3390/mi12080853
Xu D, Yang W, Zhang X, Yu S. Design and Performance Evaluation of a Single-Phase Driven Ultrasonic Motor Using Bending-Bending Vibrations. Micromachines. 2021; 12(8):853. https://doi.org/10.3390/mi12080853
Chicago/Turabian StyleXu, Dongmei, Wenzhong Yang, Xuhui Zhang, and Simiao Yu. 2021. "Design and Performance Evaluation of a Single-Phase Driven Ultrasonic Motor Using Bending-Bending Vibrations" Micromachines 12, no. 8: 853. https://doi.org/10.3390/mi12080853
APA StyleXu, D., Yang, W., Zhang, X., & Yu, S. (2021). Design and Performance Evaluation of a Single-Phase Driven Ultrasonic Motor Using Bending-Bending Vibrations. Micromachines, 12(8), 853. https://doi.org/10.3390/mi12080853