Current Stimulation of the Midbrain Nucleus in Pigeons for Avian Flight Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Ethics Statement
2.2. Polymer-Based Deep Brain Electrode Arrays
2.3. Implantation Procedure
2.4. Implantable Wireless Current Stimulator
2.5. 3D Motion Tracking
2.6. Histological Evaluation
3. Results
3.1. Without Electrical Brain Stimulation
3.2. Behavioral Change on Electrical Midbrain Stimulation
3.3. Histological Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aravanis, A.M.; Wang, L.P.; Zhang, F.; Meltzer, L.A.; Mogri, M.Z.; Schneider, M.B.; Deisseroth, K. An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 2007, 4, S143–S156. [Google Scholar] [CrossRef]
- Charkhkar, H.; Shell, C.E.; Marasco, P.D.; Pinault, G.J.; Tyler, D.J.; Triolo, R.J. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J. Neural Eng. 2018, 15, 056002. [Google Scholar] [CrossRef] [Green Version]
- Chouinard, P.A.; Van der Werf, Y.D.; Leonard, G.; Paus, T. Modulating neural networks with transcranial magnetic stimulation applied over the dorsal premotor and primary motor cortices. J. Neurophysiol. 2003, 90, 1071–1083. [Google Scholar] [CrossRef]
- Christie, B.P.; Charkhkar, H.; Shell, C.E.; Marasco, P.D.; Tyler, D.J.; Triolo, R.J. Visual inputs and postural manipulations affect the location of somatosensory percepts elicited by electrical stimulation. Sci. Rep. 2019, 9, 11699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, G.S.; Horch, K.W. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neur. Syst. Rehabil. Eng. 2005, 13, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, S.; Sim, N.S.; Pasquinelli, C.; Thielscher, A.; Lee, J.H.; Lee, H.J. Miniature ultrasound ring array transducers for transcranial ultrasound neuromodulation of freely-moving small animals. Brain Stimul. 2019, 12, 251–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Jeong, S.H.; Jun, S.B.; Kim, S.J.; Park, T.H. Enhancement of cellular olfactory signal by electrical stimulation. Electrophoresis 2009, 30, 3283–3288. [Google Scholar] [CrossRef]
- Peterson, E.J.; Tyler, D.J. Motor neuron activation in peripheral nerves using infrared neural stimulation. J. Neural Eng. 2014, 11, 016001. [Google Scholar] [CrossRef] [Green Version]
- Reilly, J.P.; Freeman, V.T.; Larkin, W.D. Sensory Effects of Transient Electrical-Stimulation—Evaluation with a Neuroelectric Model. IEEE Trans. Biomed. Eng. 1985, 32, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- An, S.K.; Park, S.I.; Jun, S.B.; Lee, C.J.; Byun, K.M.; Sung, J.H.; Wilson, B.S.; Rebscher, S.J.; Oh, S.H.; Kim, S.J. Design for a simplified cochlear implant system. IEEE Trans Biomed. Eng. 2007, 54, 973–982. [Google Scholar] [CrossRef]
- Gwon, T.M.; Min, K.S.; Kim, J.H.; Oh, S.H.; Lee, H.S.; Park, M.H.; Kim, S.J. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomed. Microdevices 2015, 17, 32. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, J.H.; Song, Y.K.; Jung, Y.; Hur, S.; Kim, W.; Kim, S.J. Design of an Analog Front End for a Bio-Inspired Auditory Sensor of a Novel Totally Implantable Cochlear Implant. Sens. Mater. 2013, 25, 553–565. [Google Scholar]
- Ulusan, H.; Chamanian, S.; Ilik, B.; Muhtaroglu, A.; Kulah, H. Fully Implantable Cochlear Implant Interface Electronics with 51.2-mu W Front-End Circuit. IEEE Trans. Very Large Scale Integr. Syst. 2019, 27, 1504–1512. [Google Scholar] [CrossRef]
- Ulusan, H.; Chamanian, S.; Zorlu, O.; Muhtaroglu, A.; Kulah, H. Neural stimulation interface with ultra-low power signal conditioning circuit for fully-implantable cochlear implants. In Proceedings of the 2017 IEEE Biomedical Circuit and Systems Conference (BioCAS), Turin, Italy, 19–21 October 2017; pp. 1–4. [Google Scholar]
- Fregni, F.; Boggio, P.S.; Santos, M.C.; Lima, M.; Vieira, A.L.; Rigonatti, S.P.; Silva, M.T.A.; Barbosa, E.R.; Nitsche, M.A.; Pascual-Leone, A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’ s disease. Mov. Disord. 2006, 21, 1693–1702. [Google Scholar] [CrossRef]
- Panikar, D.; Kishore, A. Deep brain stimulation for Parkinson’ s disease. Neurol. India 2003, 51, 167–175. [Google Scholar] [PubMed]
- Abiri, P.; Abiri, A.; Packard, R.R.S.; Ding, Y.C.; Yousefi, A.; Ma, J.G.; Bersohn, M.; Nguyen, K.L.; Markovic, D.; Moloudi, S.; et al. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Sci. Rep. 2017, 7, 6180. [Google Scholar] [CrossRef] [PubMed]
- Karten, H.J.; Hodos, W. A Stereotaxic Atlas of the Brain of the Pigeon (Columbia livia); Johns Hopkins Press: Baltimore, MD, USA, 1967. [Google Scholar]
- Huai, R.T.; Yang, J.Q.; Wang, H. The robo-pigeon based on the multiple brain regions synchronization implanted microelectrodes. Bioengineered 2016, 7, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Wylie, D.R.; Frost, B.J. Responses of Pigeon Vestibulocerebellar Neurons to Optokinetic Stimulation. 2. The 3-Dimensional Reference Frame of Rotation Neurons in the Flocculus. J. Neurophysiol. 1993, 70, 2647–2659. [Google Scholar] [CrossRef] [Green Version]
- Wylie, D.R.; Kripalani, T.; Frost, B.J. Responses of Pigeon Vestibulocerebellar Neurons to Optokinetic Stimulation.1. Functional-Organization of Neurons Discriminating between Translational and Rotational Visual Flow. J. Neurophysiol. 1993, 70, 2632–2646. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Dai, Z.D.; Wang, W.B.; Wang, H.; Tang, Y.Z. Modulating Motor Behaviors by Electrical Stimulation of Specific Nuclei in Pigeons. J. Bionic. Eng. 2015, 12, 555–564. [Google Scholar] [CrossRef]
- Choi, G.J.; Jang, J.; Kang, S.; Shim, S.; Baek, C.; Kim, B.; Park, Y.; Kim, S.; Jung, Y.; Seo, K.; et al. Locomotion Control of Pigeons using Polymer-based Deep Brain Electrodes. In Proceedings of the 2018 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2018, Honolulu, HA, USA, 17–21 July 2018; pp. 1871–1874. [Google Scholar]
- Zhao, K.; Wan, H.; Shang, Z.G.; Liu, X.Y.; Liu, L. Intracortical microstimulation parameters modulate flight behavior in pigeon. J. Integr. Neurosci. 2019, 18, 23–32. [Google Scholar] [PubMed] [Green Version]
- Wang, H.; Yang, J.Q.; Lv, C.Z.; Huai, R.T.; Li, Y.X. Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. Anim. Biol. 2018, 68, 213–225. [Google Scholar] [CrossRef]
- Shim, S.; Yun, S.; Kim, S.; Choi, G.J.; Baek, C.; Jang, J.; Jung, Y.; Sung, J.; Park, J.H.; Seo, K.; et al. A handheld neural stimulation controller for avian navigation guided by remote control. Biomed. Mater. Eng. 2020, 30, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Q.; Huai, R.T.; Wang, H.; Li, W.Y.; Wang, Z.G.; Sui, M.; Su, X.C. Global Positioning System-Based Stimulation for Robo-Pigeons in Open Space. Front. Neurorobotics 2017, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, J.J.; Cai, L.; Wang, C.; Shi, A.J. Flight control of robo-pigeon using a neural stimulation algorithm. J. Integr. Neurosci. 2018, 17, 337–342. [Google Scholar]
- Akerman, B. Behavioural Effects of Electrical Stimulation in the Forebrain of the Pigeon. I. Reproductive. Brill Behav. 1966, 26, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Akerman, B. Behavioural effects of electrical stimulation in the forebrain of the pigeon. II. Protective behaviour. Brill Behav. 1966, 26, 339–349. [Google Scholar] [CrossRef]
- Yang, J.; Huai, R.; Wang, H.; Lv, C.; Su, X. A robo-pigeon based on an innovative multi-mode telestimulation system. Biomed. Mater. Eng. 2015, 26, S357–S363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, C.; Kim, S.; Jang, J.W.; Jung, Y.; Choi, G.J.; Shim, S.; Yun, S.; Seo, K.; Song, Y.K.; Kim, S.J.; et al. Investigation of stereotactic surgery for avian brain stimulation by a fully implanted wireless system. Neurosurg. Focus 2020, 49, E10. [Google Scholar] [CrossRef]
- Lee, S.E.; Jun, S.B.; Lee, H.J.; Kim, J.; Lee, S.W.; Im, C.; Shin, H.C.; Chang, J.W.; Kim, S.J. A Flexible Depth Probe Using Liquid Crystal Polymer. IEEE Trans. Biomed. Eng. 2012, 59, 2085–2094. [Google Scholar]
- Yun, S.; Koh, C.S.; Jeong, J.; Seo, J.; Ahn, S.H.; Choi, G.J.; Shim, S.; Shin, J.; Jung, H.H.; Chang, J.W.; et al. Remote-Controlled Fully Implantable Neural Stimulator for Freely Moving Small Animal. Electronics 2019, 8, 706. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.K.; Park, J.H.; Ahn, J.H.; Park, Y.E.; Park, C.W.; Lee, J.C.; Choi, J.H.; Hwang, I.K.; Kim, S.; Shim, J.; et al. Parvalbumin-immunoreactive cells in the olfactory bulb of the pigeon: Comparison with the rat. Anat. Histol. Embryol. 2019, 48, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zheng, N.; Zhang, X.; Chen, W.; Zheng, X. An Automatic Control Model for Rat-robot. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 7413–7416. [Google Scholar]
- Huai, R.; Yang, J.; Wang, H.; Su, X. A new robo-animals navigation method guided by the remote control. In Proceedings of the BMEI 2009: 2nd International Conference on Biomedical Engineering and Informatics, Tianjin, China, 17–19 October 2009; pp. 1–4. [Google Scholar]
- Wang, H.; Huai, R.; Yang, J.; Su, X. A wireless remote control system applied in roborat research based on Brain-Computer. In Proceedings of the 2012 IEEE International Conference on Computer Science and Automation Engineering, Zhangjiajie, China, 25–27 May 2012; pp. 43–45. [Google Scholar]
- Schiffner, I.; Fuhrmann, P.; Reimann, J.; Wiltschko, R. Behavioural traits of individual homing pigeons, Columba livia f. domestica, in their homing flights. PLoS ONE 2018, 13, e0201291. [Google Scholar] [CrossRef] [PubMed]
Behavioral Change | Stimulation Parameter | Number of Pigeons Confirmed by | Midbrain Nucleus Confirmed on Histological Examination | |
---|---|---|---|---|
Trajectory Evaluation | Histological Examination * | |||
Right body turn during flight | 2 mA 226 Hz 160 μs | 4 | 3 | OM (tractus occipito-mesencephalicus), TN (nucleus taeniae) |
Left body turn during flight | 5 mA 226 Hz 80 μs | 8 | 2 | RT (nucleus rotundus) |
Wing flapping | 1.5 mA 226 Hz 160 μs | 8 | 5 | TSM (tractus septo-mesencephalicus) Av (archistriatum ventrale) |
Take-off | 4 mA 226 Hz 160 μs | 4 | 4 | TSM (tractus septo-mesencephalicus) Av (archistriatum ventrale) ** |
2015 [22] | 2018 [25] | 2019 [24] | This work | |
---|---|---|---|---|
Amplitude | 14.8 μA–30.3 μA | 50 μA–120 μA | 60 μA–450 μA | 1 mA–5 mA |
Current density (μA/μm2) | 0.04–0.09 | 0.07−0.17 | - | 0.03-0.17 |
Electrode | Stainless steel | Four pairs of resin-coated stainless-steel microelectrode | Stainless steel, Teflon insulation | LCP microelectrode array |
Pad open size (μm2) | 314 | 706 | - | 30,000 |
Target nucleus for lateral body turn | FRM, VeDL | DIVA | FRM | OM, TN, RT |
Target nucleus for take-off | ICo, LLd, FRM, Loc | - | - | TSM, Av |
Flying | × | × | ○ | ○ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.; Baek, C.; Kim, S.; Lee, T.-K.; Choi, G.-J.; Shim, S.; Yun, S.; Jung, Y.; Lee, C.-E.; Ko, S.; et al. Current Stimulation of the Midbrain Nucleus in Pigeons for Avian Flight Control. Micromachines 2021, 12, 788. https://doi.org/10.3390/mi12070788
Jang J, Baek C, Kim S, Lee T-K, Choi G-J, Shim S, Yun S, Jung Y, Lee C-E, Ko S, et al. Current Stimulation of the Midbrain Nucleus in Pigeons for Avian Flight Control. Micromachines. 2021; 12(7):788. https://doi.org/10.3390/mi12070788
Chicago/Turabian StyleJang, Jungwoo, Changhoon Baek, Sunhyo Kim, Tae-Kyeong Lee, Gwang-Jin Choi, Shinyong Shim, Seunghyeon Yun, Younginha Jung, Chae-Eun Lee, Seunghyung Ko, and et al. 2021. "Current Stimulation of the Midbrain Nucleus in Pigeons for Avian Flight Control" Micromachines 12, no. 7: 788. https://doi.org/10.3390/mi12070788
APA StyleJang, J., Baek, C., Kim, S., Lee, T.-K., Choi, G.-J., Shim, S., Yun, S., Jung, Y., Lee, C.-E., Ko, S., Seo, K., Seo, J.-M., Won, M.-H., Kim, S. J., & Song, Y.-K. (2021). Current Stimulation of the Midbrain Nucleus in Pigeons for Avian Flight Control. Micromachines, 12(7), 788. https://doi.org/10.3390/mi12070788