Asymmetric Double Freeform Surface Lens for Integrated LED Automobile Headlamp
Abstract
:1. Introduction
2. Design Method
2.1. Optical System of the Low Beam Mode
2.2. Optical System of the High Beam Mode
3. Simulation
4. Experiment
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schubert, E.; Kim, J. Solid-state light sources getting smart. Science 2005, 308, 1274–1278. [Google Scholar] [CrossRef]
- Georlette, V.; Bette, S.; Brohez, S.; Pérez-Jiménez, R.; Point, N.; Moeyaert, V. Outdoor Visible Light Communication Channel Modeling under Smoke Conditions and Analogy with Fog Conditions. Optics 2020, 1, 259–281. [Google Scholar] [CrossRef]
- Liang, W.L.; Su, G.J. Design of a high-efficiency train headlamp with low power consumption using dual half-parabolic aluminized reflectors. Appl. Opt. 2018, 57, 1305–1314. [Google Scholar]
- Tsai, C.-Y. Design of free-form reflector for vehicle LED low-beam headlamp. Opt. Commun. 2016, 372, 1–13. [Google Scholar] [CrossRef]
- Ge, A.; Wang, W.; Du, Z.; Qiu, P.; Wang, J.; Cai, J. High-energy-efficiency optical system for an LED-based headlamp architecture. Appl. Opt. 2013, 52, 8318–8323. [Google Scholar] [CrossRef]
- Brick, P.; Schmid, T. Automotive headlamp concepts with low-beam and high-beam out of a single LED. Proc. SPIE 2011, 8170, 817008. [Google Scholar]
- Choi, H.; Choe, S.; Ryu, J. Optical Design of a Novel Collimator System with a Variable Virtual-Object Distance for an Inspection Instrument of Mobile Phone Camera Optics. Appl. Sci. 2021, 11, 3350. [Google Scholar] [CrossRef]
- Cvetkovic, A.; Dross, O.; Chaves, J.; Benitez, P.; Miñano, J.C.; Mohedano, R. Etendue-preserving mixing and projection optics for high-luminance LEDs, applied to automotive headlamps. Opt. Express 2006, 14, 13014–13020. [Google Scholar] [CrossRef]
- Dross, O.; Cvetkovic, A.; Chaves, J.; Benítez, P.; Miñano, J.C. LED headlight architecture that creates a high quality beam pattern independent of LED shortcomings. SPIE-Int. Soc. Opt. Eng. 2005, 5942, 59420D. [Google Scholar]
- Domhardt, A.; Rohlfing, U.; Weingaertner, S.; Klinger, K.; Kooß, D.; Manz, K.; Lemmer, U. New design tools for LED headlamps. SPIE 2008, 7003, 70032C. [Google Scholar]
- Hsieh, C.-C.; Li, Y.-H.; Hung, C.-C. Modular design of the LED vehicle projector headlamp system. Appl. Opt. 2013, 52, 5221–5229. [Google Scholar] [CrossRef]
- Chu, S.-C.; Chen, P.-Y.; Huang, C.-Y.; Chang, K.-C. Design of a high-efficiency LED low-beam headlamp using Oliker’s compound ellipsoidal reflector. Appl. Opt. 2020, 59, 4872–4879. [Google Scholar] [CrossRef] [PubMed]
- Ge, P.; Wang, X.; Li, Y.; Wang, H. A projective LED low-beam headlamp of motorbikes. SPIE 2014, 9298, 92981U. [Google Scholar]
- Wang, H.; Wang, X.; Li, Y.; Ge, P. Design of a newly projected light-emitting diode low-beam headlamp based on microlenses. Appl. Opt. 2015, 54, 1794–1801. [Google Scholar] [CrossRef]
- Luo, D.; Ge, P.; Liu, D.; Wang, H. A combined lens design for an LED low-beam motorcycle headlight. Light. Res. Technol. 2017, 50, 456–466. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, X.; Ge, P.; Yu, J. A high-efficiency freeform reflector for a light-emitting diode low-beam headlamp. Light. Res. Technol. 2016, 48, 1005–1016. [Google Scholar] [CrossRef]
- Qiu, P.; Ge, A.; Wang, J.; Cai, J.; Zhu, L.; Du, Z. Design of an LED-based headlamp low-beam system using combined prisms. Light. Res. Technol. 2014, 47, 248–253. [Google Scholar] [CrossRef]
- Whang, A.; Jhan, K.C.; Chao, S.M.; Chen, G.W.; Chou, C.H.; Lin, C.M.; Chang, C.M.; Chen, K.Y.; Lai, Y.L. An innovative vehicle headlamp design based on a high-efficiency LED light pipe system. Lighting Res. Technol. 2013, 47, 210–220. [Google Scholar] [CrossRef]
- Chen, F.; Wang, K.; Qin, Z.; Wu, D.; Luo, X.; Liu, S. Design method of high-efficient LED headlamp lens. Opt. Express 2010, 18, 20926–20938. [Google Scholar] [CrossRef]
- Ma, C.-T.; Chou, K.-H.; Chen, Y.-Y.; Whang, A.J.-W.; Chen, K.-Y. Design and optimization of automotive headlamps based on projection system with double ellipsoidal reflector. Photonics Eur. 2010, 7717, 77170M. [Google Scholar]
- Liou, Y.C.; Wang, W. Lighting design of headlamp for adaptive front-lighting system. J. Chin. Inst. Eng. 2007, 30, 411–422. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, S.; Liu, R.; Hong, Z.; Zheng, Z.; Fan, Z.; Ma, D. Freeform surface design for high-efficient LED low-beam headlamp lens. Opt. Commun. 2020, 477, 126269. [Google Scholar] [CrossRef]
- Hung, C.-C.; Fang, Y.-C.; Huang, M.-S.; Hsueh, B.-R.; Wang, S.-F.; Wu, B.-W.; Lai, W.-C.; Chen, Y.-L. Optical design of automotive headlight system incorporating digital micromirror device. Appl. Opt. 2010, 49, 4182–4187. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, X.; Ge, P. Modular design of a high-efficiency LED headlamp system based on freeform reflectors. Opt. Laser Technol. 2015, 72, 79–85. [Google Scholar] [CrossRef]
- Boroczki, A.; Horvath, C.; Panyik, T. Three-Mode Integrated Headlamp. U.S. Patent No. US20090251915A1, 6 December 2011. [Google Scholar]
- Rice, L.M.; Tessnow, T. Headlamp Featuring Both Low-Beam and High-Beam Outputs and Devoid of Moving Parts. U.S. Patent No. US8894257B2, 25 November 2014. [Google Scholar]
- United Nations Economic Commission for Europe, Vehicle Regulations, Reg112. Available online: http://www.unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/r112r1e.pdf (accessed on 4 May 2021).
- United Nations Economic Commission for Europe, Vehicle Regulations, Reg48. Available online: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/2013/R048r9e.pdf (accessed on 4 May 2021).
- United Nations Economic Commission for Europe, Vehicle Regulations, Reg128. Available online: https://unece.org/fileadmin/DAM/trans/main/wp29/wp29regs/2015/R128e.pdf (accessed on 4 May 2021).
- Ge, P.; Wang, X.; Li, Y.; Wang, H. Reflective Optics Design for an LED High Beam Headlamp of Motorbikes. Sci. World J. 2015, 2015, 503171. [Google Scholar] [CrossRef]
- Owens, D.A.; Wood, J.M.; Owens, J.M. Effects of age and illumination on night driving: A road test. Hum. Factors J. Hum. Factors Ergon. Soc. 2007, 49, 1115–1131. [Google Scholar] [CrossRef]
- Sun, W.-S.; Tien, C.-L.; Chen, J.-A.; Lin, J.-S. Optical design for a cost-effective low-beam headlamp with a white light LED. Opt. Quantum Electron. 2020, 52, 1–17. [Google Scholar] [CrossRef]
- Software LightTools. Available online: https://www.synopsys.com/optical-solutions/lighttools.html (accessed on 4 May 2021).
- KW H4L531.TE of OSRAM. Ave: https://www.osram.com/ecat/OSLON%C2%AE%20Black%20Flat%20KW%20H4L531.TE/com/en/class_pim_web_catalog_103489/prd_pim_device_2190830/ (accessed on 4 May 2021).
Point on Target Plane | Required Illuminance in Lux | Simulated illuminance in Lux |
---|---|---|
HV | ≤0.7 | 0.28 |
B50L | ≤0.4 | 0.00 |
75L | ≤12 | 6.50 |
50L | ≤15 | 13.36 |
75R | ≥15 | 41.50 |
50R | ≥12 | 40.48 |
50V | ≥6 | 35.08 |
25L | ≥2 | 5.22 |
25R | ≥2 | 5.67 |
Zone I | ≤2E * | √ |
Zone III | ≤0.7 | √ |
Zone IV | ≥3 | √ |
Point on Target Plane | Required Illuminance in Lux | Simulated Illuminance in Lux |
---|---|---|
Emax | ≥48 and ≤240 | 80.80 |
HV | ≥0.8 Emax | 74.81 |
0–1125L, 1125R | ≥24 | √ |
0–2250, 2250R | ≥6 | √ |
Point on Target Plane | Required Illuminance in Lux | Tested Illuminance in Lux |
---|---|---|
HV | ≤0.7 | 0.42 |
B50L | ≤0.4 | 0.00 |
75L | ≤12 | 7.36 |
50L | ≤15 | 13.25 |
75R | ≥15 | 32.32 |
50R | ≥12 | 30.26 |
50V | ≥6 | 34.26 |
25L | ≥2 | 6.32 |
25R | ≥2 | 6.85 |
Zone I | ≤2E * | √ |
Zone III | ≤0.7 | √ |
Zone IV | ≥3 | √ |
Point on Target Plane | Required Illuminance in Lux | Tested Illuminance in Lux |
---|---|---|
Emax | ≥48 and ≤240 | 70.36 |
HV | ≥0.8 Emax | 65.34 |
0–1125L, 1125R | ≥24 | √ |
0–2250L, 2250R | ≥6 | √ |
Items | Volume | Cost | Low Beam | High Beam | Cutoff Line | Chromatic Dispersion on the Target Plane |
---|---|---|---|---|---|---|
New integrated headlamp system | Small | Low | Qualified | Qualified | Slight chromatic dispersion | Slight |
Traditional projection headlamp system | Large | High | Qualified | Qualified | A little serious chromatic dispersion | A little serious |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, D.; Wei, Y.; Wang, H. Asymmetric Double Freeform Surface Lens for Integrated LED Automobile Headlamp. Micromachines 2021, 12, 663. https://doi.org/10.3390/mi12060663
Zhang H, Liu D, Wei Y, Wang H. Asymmetric Double Freeform Surface Lens for Integrated LED Automobile Headlamp. Micromachines. 2021; 12(6):663. https://doi.org/10.3390/mi12060663
Chicago/Turabian StyleZhang, Hui, Dengfei Liu, Yinwan Wei, and Hong Wang. 2021. "Asymmetric Double Freeform Surface Lens for Integrated LED Automobile Headlamp" Micromachines 12, no. 6: 663. https://doi.org/10.3390/mi12060663
APA StyleZhang, H., Liu, D., Wei, Y., & Wang, H. (2021). Asymmetric Double Freeform Surface Lens for Integrated LED Automobile Headlamp. Micromachines, 12(6), 663. https://doi.org/10.3390/mi12060663