A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe3O4-SWCNTs/Ionic Liquid Paste Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis Procedure
2.2. Apparatus
2.3. Real Sample
3. Results and Discussion
3.1. Electrochemical Behaviour of Dasatinib
3.2. Real Sample Analysis of Dasatinib Anticancer Drug
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ji, P.; Gong, Y.; Jiang, C.; Hu, X.; Di, G.; Shao, Z. Association between socioeconomic factors at diagnosis and survival in breast cancer: A population-based study. Cancer Med. 2020, 9, 1922–1936. [Google Scholar] [CrossRef] [Green Version]
- Shien, T.; Iwata, H.; Aogi, K.; Fukutomi, T.; Inoue, K.; Kinoshita, T.; Takahashi, M.; Matsui, A.; Shibata, T.; Fukuda, H. Tamoxifen versus tamoxifen plus doxorubicin and cyclophosphamide as adjuvant therapy for node-positive postmenopausal breast cancer: Results of a Japan Clinical Oncology Group Study (JCOG9401). Int. J. Clin. Oncol. 2014, 19, 982–988. [Google Scholar] [CrossRef]
- Moseley, A.; Carati, C.; Piller, N. A systematic review of common conservative therapies for arm lymphoedema secondary to breast cancer treatment. Ann. Oncol. 2006, 18, 639–646. [Google Scholar] [CrossRef]
- Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2005, 104, 1129–1137. [Google Scholar] [CrossRef]
- Skovsgaard, T. Mechanisms of resistance to daunorubicin in Ehrlich ascites tumor cells. Cancer Res. 1978, 38, 1785–1791. [Google Scholar]
- Yu, E.Y.; Wilding, G.; Posadas, E.; Gross, M.; Culine, S.; Massard, C.; Morris, M.J.; Hudes, G.; Calabrò, F.; Cheng, S.; et al. Phase II Study of Dasatinib in Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2009, 15, 7421–7428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, R.S.; Bengala, C.; Ibrahim, N.; Roché, H.; Sparano, J.; Strauss, L.C.; Fairchild, J.; Sy, O.; Goldstein, L.J. Dasatinib as a Single Agent in Triple-Negative Breast Cancer: Results of an Open-Label Phase 2 Study. Clin. Cancer Res. 2011, 17, 6905–6913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forouzanfar, S.; Alam, F.; Pala, N.; Wang, C. Review—A Review of Electrochemical Aptasensors for Label-Free Cancer Diagnosis. J. Electrochem. Soc. 2020, 167, 067511. [Google Scholar] [CrossRef]
- Sheydaei, O.; Khajehsharifi, H.; Rajabi, H.R. Rapid and selective diagnose of Sarcosine in urine samples as prostate cancer biomarker by mesoporous imprinted polymeric nanobeads modified electrode. Sens. Actuators B Chem. 2020, 309, 127559. [Google Scholar] [CrossRef]
- Moudgil, P.; Bedi, J.S.; Aulakh, R.S.; Gill, J.P.S.; Kumar, A. Validation of HPLC Multi-residue Method for Determination of Fluoroquinolones, Tetracycline, Sulphonamides and Chloramphenicol Residues in Bovine Milk. Food Anal. Methods 2019, 12, 338–346. [Google Scholar] [CrossRef]
- Jiang, C.-Q.; Gao, M.-X.; Meng, X.-Z. Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2003, 59, 1605–1610. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron. 2016, 86, 879–884. [Google Scholar] [CrossRef]
- Sabourian, R.; Mirjalili, S.Z.; Namini, N.; Chavoshy, F.; Hajimahmoodi, M.; Safavi, M. HPLC methods for quantifying anticancer drugs in human samples: A systematic review. Anal. Biochem. 2020, 610, 113891. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-Y.; Wu, H.-L.; Fang, H.; Wang, T.; Ouyang, Y.-Z.; Sun, X.-D.; Tong, G.-Y.; Ding, Y.-J.; Yu, R.-Q. Comparison of three chemometric methods for processing HPLC-DAD data with time shifts: Simultaneous determination of ten molecular targeted anti-tumor drugs in different biological samples. Talanta 2021, 224, 121798. [Google Scholar] [CrossRef] [PubMed]
- Gos, N.A. HPLC-ICP-MS Method Optimization for Separation and Determination of the Gold Nanocarrier‒Anticancer Drug System Constituents. Available online: https://repo.pw.edu.pl/info/bachelor/WUT3a23016723984568a44bb160af5e0247/ (accessed on 13 April 2021).
- Alarjah, M.A.; Shahin, M.H.; Al-Azzah, F.; Alarjah, A.A.; Omran, Z.H. Concomitant analysis of dasatinib and curcuminoids in a pluronic-based nanoparticle formulation using a novel HPLC method. Chromatographia 2020, 83, 1355–1370. [Google Scholar] [CrossRef]
- Wani, T.A.; Bakheit, A.H.; Abounassif, M.A.; Zargar, S. Study of Interactions of an Anticancer Drug Neratinib With Bovine Serum Albumin: Spectroscopic and Molecular Docking Approach. Front. Chem. 2018, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Zhang, Q.; He, Y.; Deng, M.; Wang, X.; Ma, J. Gradient elution LC-MS determination of dasatinib in rat plasma and its pharmacokinetic study. Acta Chromatographia 2015, 27, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Mirmomtaz, E.; Asghar Ensafi, A.; Karimi-Maleh, H. Electrocatalytic Determination of 6-Tioguanine at ap-Aminophenol Modified Carbon Paste Electrode. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2008, 20, 1973–1979. [Google Scholar] [CrossRef]
- Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem. J. 2019, 150, 104085. [Google Scholar] [CrossRef]
- Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Gold nanoparticles and reduced graphene oxide-amplified label-free DNA biosensor for dasatinib detection. New J. Chem. 2018, 42, 16378–16383. [Google Scholar] [CrossRef]
- Münstedt, T.; Rademacher, E.; Petz, M. HPLC, Charm II and ELISA: Advantages and disadvantages for the analysis of tetracyclines in honey. Apiacta 2005, 40, 5–9. [Google Scholar]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Kirlikovali, K.O.; Van Le, Q.; Jang, H.W.; Varma, R.S.; Farha, O.K.; Shokouhimehr, M. Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Cryst. Growth Des. 2020, 20, 7034–7064. [Google Scholar] [CrossRef]
- Tajik, S.; Mahmoudi-Moghaddam, H.; Beitollahi, H. Screen-Printed Electrode Modified with La3+-Doped Co3O4 Nanocubes for Electrochemical Determination of Hydroxylamine. J. Electrochem. Soc. 2019, 166, B402–B406. [Google Scholar] [CrossRef]
- Beitollahi, H.; Moghaddam, H.M.; Tajik, S. Voltammetric Determination of Bisphenol A in Water and Juice Using a Lanthanum (III)-Doped Cobalt (II,III) Nanocube Modified Carbon Screen-Printed Electrode. Anal. Lett. 2019, 52, 1432–1444. [Google Scholar] [CrossRef]
- Asrami, P.N.; Azar, P.A.; Tehrani, M.S.; Mozaffari, S.A. Glucose Oxidase/Nano-ZnO/Thin Film Deposit FTO as an Innovative Clinical Transducer: A Sensitive Glucose Biosensor. Front. Chem. 2020, 8, 503. [Google Scholar] [CrossRef] [PubMed]
- Asrami, P.N.; Mozaffari, S.A.; Tehrani, M.S.; Azar, P.A. A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode. Int. J. Biol. Macromol. 2018, 118, 649–660. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Alizadeh, M.; Orooji, Y.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. Guanine-Based DNA Biosensor Amplified with Pt/SWCNTs Nanocomposite as Analytical Tool for Nanomolar Determination of Daunorubicin as an Anticancer Drug: A Docking/Experimental Investigation. Ind. Eng. Chem. Res. 2021, 60, 816–823. [Google Scholar] [CrossRef]
- Bayraktepe, D.E. A voltammetric study on drug-DNA interactions: Kinetic and thermodynamic aspects of the relations between the anticancer agent dasatinib and ds-DNA using a pencil lead graphite electrode. Microchem. J. 2020, 157, 104946. [Google Scholar] [CrossRef]
- Beitollahi, H.; Safaei, M.; Tajik, S. Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples: A review. Anal. Bioanal. Chem. Res. 2019, 6, 81–96. [Google Scholar]
- Sanati, A.L.; Faridbod, F. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci 2017, 12, 7997–8005. [Google Scholar] [CrossRef]
- Faridbod, F.; Sanati, A.L. Graphene Quantum Dots in Electrochemical Sensors/Biosensors. Curr. Anal. Chem. 2019, 15, 103–123. [Google Scholar] [CrossRef]
- Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq. 2017, 241, 316–320. [Google Scholar] [CrossRef]
- Shojaei, A.F.; Tabatabaeian, K.; Shakeri, S.; Karimi, F. A novel 5-fluorouracile anticancer drug sensor based on ZnFe2O4 magnetic nanoparticles ionic liquids carbon paste electrode. Sens. Actuators B Chem. 2016, 230, 607–614. [Google Scholar] [CrossRef]
- Ahmadi, F.; Raoof, J.B.; Ojani, R.; Baghayeri, M.; Lakouraj, M.M.; Tashakkorian, H. Synthesis of Ag nanoparticles for the electrochemical detection of anticancer drug flutamide. Chin. J. Catal. 2015, 36, 439–445. [Google Scholar] [CrossRef]
- Svancara, I.; Vytras, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Ghanei-Motlagh, M.; Baghayeri, M. Determination of Trace Tl(I) by Differential Pulse Anodic Stripping Voltammetry Using a Novel Modified Carbon Paste Electrode. J. Electrochem. Soc. 2020, 167, 066508. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Keyvanfard, M.; Alizad, K.; Fouladgar, M.; Beitollahi, H.; Mokhtari, A.; Gholami-Orimi, F. Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode. Int. J. Electrochem. Sci 2011, 6, 6141–6150. [Google Scholar]
- Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S. N-(3, 4-Dihydroxyphenethyl)-3, 5-dinitrobenzamide-Modified Multiwall Carbon Nanotubes Paste Electrode as a Novel Sensor for Simultaneous Determination of Penicillamine, Uric acid, and Tryptophan. Electroanalysis 2011, 23, 1478–1487. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Karimi-Maleh, H. A Voltammetric Sensor Based on Modified Multiwall Carbon Nanotubes for Cysteamine Determination in the Presence of Tryptophan Using p-Aminophenol as a Mediator. Electroanalysis 2010, 22, 2558–2568. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Yola, M.L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P.S.; Rouhi, J.; Baghayeri, M. A novel detection method for organophosphorus insecticide fenamiphos: Molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. J. Colloid Interface Sci. 2021, 592, 174–185. [Google Scholar] [CrossRef]
- Bayraktepe, D.E.; Polat, K.; Yazan, Z. Electrochemical oxidation pathway of the anti-cancer agent dasatinib using disposable pencil graphite electrode and its adsorptive stripping voltammetric determination in biological samples. J. Turk. Chem. Soc. Sect. A Chem. 2018, 5, 381–392. [Google Scholar] [CrossRef]
- Ganjali, M.R.; Salimi, H.; Tajik, S.; Beitollahi, H.; Rezapour, M.; Larijani, B. Application of Fe3O4@ SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa. Int. J. Electrochem. Sci. 2017, 12, 5243–5253. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Biparva, P. Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite. J. Serb. Chem. Soc. 2018, 83, 863–874. [Google Scholar] [CrossRef] [Green Version]
- Baghayeri, M. Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: Application to determination of droxidopa in presence of phenobarbital. Sens. Actuators B Chem. 2017, 240, 255–263. [Google Scholar] [CrossRef]
- Raoof, J.B.; Ojani, R.; Baghayeri, M.; Amiri-Aref, M. Application of a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes as a sensor device for simultaneous determination of acetaminophen and tyramine. Anal. Methods 2012, 4, 1579. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Khoddami, E.; Rezaei, B.; Karimi-Maleh, H. p-Aminophenol–multiwall carbon nanotubes–TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. Colloids Surf. B Biointerfaces 2010, 81, 42–49. [Google Scholar] [CrossRef]
- Kumar, P.S.; Varjani, S.J.; Suganya, S. Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling. Bioresour. Technol. 2018, 250, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Vincent, C.; Kirthika, K.; Kumar, K.S. Kinetics and equilibrium studies of Pb2+ in removal from aqueous solutions by use of nano-silversol-coated activated carbon. Braz. J. Chem. Eng. 2010, 27, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Nithya, K.; Sathish, A.; Kumar, P.S.; Ramachandran, T. Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions. J. Ind. Eng. Chem. 2018, 59, 230–241. [Google Scholar] [CrossRef]
- Suganya, S.; Kumar, P.S.; Saravanan, A. Construction of active bio-nanocomposite by inseminated metal nanoparticles onto activated carbon: Probing to antimicrobial activity. Iet Nanobiotechnol. 2017, 11, 746–753. [Google Scholar] [CrossRef]
- Kumar, P.S.; Nair, A.S.; Ramaswamy, A.; Saravanan, A. Nano-zero valent iron impregnated cashew nut shell: A solution to heavy metal contaminated water/wastewater. Iet Nanobiotechnol. 2018, 12, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Gholami, P.; Dinpazhoh, L.; Khataee, A.; Orooji, Y. Sonocatalytic activity of biochar-supported ZnO nanorods in degradation of gemifloxacin: Synergy study, effect of parameters and phytotoxicity evaluation. Ultrason. Sonochemistry 2019, 55, 44–56. [Google Scholar] [CrossRef]
- Arzaghi, H.; Rahimi, B.; Adel, B.; Rahimi, G.; Taherian, Z.; Sanati, A.L.; Dezfuli, A.S. Nanomaterials modulating stem cell behavior towards cardiovascular cell lineage. Mater. Adv. 2021. [Google Scholar] [CrossRef]
- Hojjati-Najafabadi, A.; Ghasemi, A.; Mozaffarinia, R. Magneto-electric features of BaFe9.5Al1.5CrO19-CaCu3Ti4O12 nanocomposites. Ceram. Int. 2017, 43, 244–249. [Google Scholar] [CrossRef]
- Rahimi, H.; Mozafarinia, R.; Razavi, R.S.; Paimozd, E.; Najafabadi, A.H. Processing and Properties of GPTMS-TEOS Hybrid Coatings on 5083 Aluminium Alloy. Adv. Mater. Res. 2011, 239–242, 736–742. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Ranjbari, S.; Tanhaei, B.; Ayati, A.; Orooji, Y.; Alizadeh, M.; Karimi, F.; Salmanpour, S.; Rouhi, J.; Sillanpää, M. Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. Environ. Res. 2021, 195, 110809. [Google Scholar] [CrossRef] [PubMed]
- Arefi-Oskoui, S.; Khataee, A.; Safarpour, M.; Orooji, Y.; Vatanpour, V. A review on the applications of ultrasonic technology in membrane bioreactors. Ultrason. Sonochemistry 2019, 58, 104633. [Google Scholar] [CrossRef]
- Ghasemi, M.; Khataee, A.; Gholami, P.; Soltani, R.D.C.; Hassani, A.; Orooji, Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J. Environ. Manag. 2020, 267, 110629. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Orooji, Y.; Ayati, A.; Qanbari, S.; Tanhaei, B.; Karimi, F.; Alizadeh, M.; Rouhi, J.; Fu, L.; Sillanpää, M. Recent advances in removal techniques of Cr (VI) toxic ion from aqueous solution: A comprehensive review. J. Mol. Liq. 2021, 329, 115062. [Google Scholar] [CrossRef]
- Fouladgar, M. CuO-CNT Nanocomposite/Ionic Liquid Modified Sensor as New Breast Anticancer Approach for Determination of Doxorubicin and 5-Fluorouracil Drugs. J. Electrochem. Soc. 2018, 165, B559–B564. [Google Scholar] [CrossRef]
- Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A Voltammetric Sensor for Simultaneous Determination of Vitamin C and Vitamin B6 in Food Samples Using ZrO2 Nanoparticle/Ionic Liquids Carbon Paste Electrode. Food Anal. Methods 2015, 8, 549–557. [Google Scholar] [CrossRef]
- Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. LWT- Food Sci. Technol. 2014, 57, 679–685. [Google Scholar] [CrossRef]
- Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs Nanocomposite Ionic Liquid Paste Electrode as a Sensitive Voltammetric Sensor for Determination of Ascorbic Acid in Food Samples. Food Anal. Methods 2013, 6, 1639–1647. [Google Scholar] [CrossRef]
- Fang, B.; Wang, G.; Zhang, W.; Li, M.; Kan, X. Fabrication of Fe3O4 Nanoparticles Modified Electrode and Its Application for Voltammetric Sensing of Dopamine. Electroanalysis 2005, 17, 744–748. [Google Scholar] [CrossRef]
- Ahammad, A.J.S.; Lee, J.-J.; Rahman, A. Electrochemical Sensors Based on Carbon Nanotubes. Sensors 2009, 9, 2289–2319. [Google Scholar] [CrossRef]
- Karimi, F.; Zakariae, N.; Esmaeili, R.; Alizadeh, M.; Tamadon, A.-M. Carbon Nanotubes for Amplification of Electrochemical Signal in Drug and Food Analysis; A Mini Review. Curr. Biochem. Eng. 2020, 6, 114–119. [Google Scholar] [CrossRef]
- Zargar, B.; Parham, H.; Hatamie, A. Electrochemical investigation and stripping voltammetric determination of captopril at CuO nanoparticles/multi-wall carbon nanotube nanocomposite electrode in tablet and urine samples. Anal. Methods 2014, 7, 1026–1035. [Google Scholar] [CrossRef]
- Abbasghorbani, M. Fe3O4 loaded single wall carbon nanotubes and 1-methyl-3-octylimidazlium chloride as two amplifiers for fabrication of highly sensitive voltammetric sensor for epirubicin anticancer drug analysis. J. Mol. Liq. 2018, 266, 176–180. [Google Scholar] [CrossRef]
- Jesus, C.S.; Diculescu, V.C. Redox mechanism, spectrophotometrical characterisation and voltammetric determination in serum samples of kinases inhibitor and anticancer drug dasatinib. J. Electroanal. Chem. 2015, 752, 47–53. [Google Scholar] [CrossRef]
- Alavi-Tabari, S.A.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. 2018, 811, 84–88. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H. A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode. Anal. Bioanal. Chem. Res. 2019, 6, 171–182. [Google Scholar]
- Foroughi, M.M.; Beitollahi, H.; Tajik, S.; Akbari, A.; Hosseinzadeh, R. Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int. J. Electrochem 2014, 9, 8407. [Google Scholar]
- Baghbamidi, S.E.; Beitollahi, H.; Tajik, S.; Hosseinzadeh, R. Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. Int. J. Electrochem. Sci. 2016, 11, 10874–10883. [Google Scholar] [CrossRef]
Electrode | Mediator | Linear Dynamic Range (µM) | Limit of Detection (µM) | Ref. |
---|---|---|---|---|
Glassy carbon | --- | 0.2–2.0 | 0.13 | [70] |
Pencil graphite | --- | 0.0092–1.0 | 0.0028 | [42] |
Carbon paste | Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate | 5.0–500 | 1.0 | [12] |
Glassy carbon | ds-DNA + reduced graphene oxide and gold nanoparticles | 0.03–5.5 | 0.009 | [21] |
Carbon paste | ZnO nanoparticle and 1-butyl-3-methylimidazolium tetrafluoroborate | 1.0–1200 | 0.5 | [71] |
Carbon paste | Fe3O4-SWCNTs and mim-BF4− | 0.001–220 | 0.0007 | This work |
Species | Tolerance Limits (Weight-Substance/Weight Dasatinib) |
---|---|
Na+, Li+, Br−, CO32- | 1000 |
Methionine, Glycine, alanine | 750 |
Glucose and Sucrose | 650 |
Vitamin C, Vitamin B2, | 400 |
Sample | Added (µM) | Expected (µM) | Founded (µM) | Recovery% |
---|---|---|---|---|
Tablet - | 2.00 | 2.00 | 2.05 ± 0.07 | 102.5 |
10.00 | 12.00 | 11.95 ± 0.21 | 99.58 | |
dextrose saline | --- | --- | <LOD | --- |
15.00 | 15.00 | 15.54 ± 0.76 | 103.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghaddam, A.; Zamani, H.A.; Karimi-Maleh, H. A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe3O4-SWCNTs/Ionic Liquid Paste Sensor. Micromachines 2021, 12, 437. https://doi.org/10.3390/mi12040437
Moghaddam A, Zamani HA, Karimi-Maleh H. A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe3O4-SWCNTs/Ionic Liquid Paste Sensor. Micromachines. 2021; 12(4):437. https://doi.org/10.3390/mi12040437
Chicago/Turabian StyleMoghaddam, Ali, Hassan Ali Zamani, and Hassan Karimi-Maleh. 2021. "A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe3O4-SWCNTs/Ionic Liquid Paste Sensor" Micromachines 12, no. 4: 437. https://doi.org/10.3390/mi12040437
APA StyleMoghaddam, A., Zamani, H. A., & Karimi-Maleh, H. (2021). A New Electrochemical Platform for Dasatinib Anticancer Drug Sensing Using Fe3O4-SWCNTs/Ionic Liquid Paste Sensor. Micromachines, 12(4), 437. https://doi.org/10.3390/mi12040437