Development and Comparative Analysis of Electrochemically Etched Tungsten Tips for Quartz Tuning Fork Sensor
Abstract
:1. Introduction
2. Experimental Methods and Procedures
2.1. Alternating Current (AC) Etching
2.2. Meniscus Etching
2.3. Direct Current (DC) Etching
3. Results and Discussion
3.1. AC Etching Results
3.2. Meniscus Etching Results
3.3. DC Etching Results
3.4. EDX Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, W.-T.; Hwang, I.-S.; Chang, M.-T.; Lin, C.-Y.; Hsu, W.-H.; Hou, J.-L. Method of electrochemical etching of tungsten tips with controllable profiles. Rev. Sci. Instrum. 2012, 83, 083704. [Google Scholar] [CrossRef] [PubMed]
- Ju, B.-F.; Chen, Y.-L.; Ge, Y. The art of electrochemical etching for preparing tungsten probes with controllable tip profile and characteristic parameters. Rev. Sci. Instrum. 2011, 82, 013707. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J. Introduction to Scanning Tunnelling Microscopy, 2nd ed.; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Salvam, K. Available online: www.vit.ac.in (accessed on 26 September 2020).
- Feltin, N.; Ducourtieux, S.; Crouzier, L.; Delvallée, A.; Dirscherl, K.; Zeng, G. Scanning probe microscopy (SPM). In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 49–63. [Google Scholar] [CrossRef]
- Schoelz, J.K.; Xu, P.; Barber, S.D.; Qi, D.; Ackerman, M.L.; Basnet, G.; Cook, C.T.; Thibado, P.M. High-percentage success method for preparing and pre-evaluating tungsten tips for atomic-resolution scanning tunneling microscopy. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2012, 30, 033201. [Google Scholar] [CrossRef] [Green Version]
- Ibe, J.P.; Bey, P.P.; Brandow, S.L.; Brizzolara, R.A.; Burnham, N.A.; DiLella, D.P.; Lee, K.P.; Marrian, C.R.K.; Colton, R.J. On the electrochemical etching of tips for scanning tunneling microscopy. J. Vac. Sci. Technol. A Vac. Surf. Films 1990, 8, 3570–3575. [Google Scholar] [CrossRef]
- Hobara, R.; Yoshimoto, S.; Hasegawa, S.; Sakamoto, K. Dynamic electrochemical-etching technique for tungsten tips suitable for multi-tip scanning tunneling microscopes. e-J. Surf. Sci. Nanotechnol. 2007, 5, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.-H.; Kim, H.-C. Electrochemical etching technique for tungsten electrodes with controllable profiles for micro-electrical discharge machining. Int. J. Precis. Eng. Manuf. 2015, 16, 1053–1060. [Google Scholar] [CrossRef]
- Khan, Y.; Al-Falih, H.; Zhang, Y.; Ng, T.K.; Ooi, B.S. Two-step controllable electrochemical etching of tungsten scanning probe microscopy tips. Rev. Sci. Instrum. 2012, 83, 063708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Meng, G.; Saji, S.E.; Gao, X.; Zhang, P.; Wu, D.; Pan, Y.; Yin, Z.; Cheng, Y. Simulation-guided nanofabrication of high-quality practical tungsten probes. RSC Adv. 2020, 10, 24280–24287. [Google Scholar] [CrossRef]
- Edwards, G.J.; Pearce, P.R. A comparison of AC and DC electrochemical etching techniques for the fabrication of tungsten whiskers. J. Phys. D Appl. Phys. 1978, 11, 761–764. [Google Scholar] [CrossRef]
- Guise, O.L.; Ahner, J.W.; Jung, M.C.; Goughnour, P.C.; Yates, J.T. Reproducible electrochemical etching of tungsten probe tips. Nano Lett. 2002, 2, 191–193. [Google Scholar] [CrossRef]
- Kim, D.-I.; Ahn, H.-S. Etching voltage control technique for electrochemical fabrication of scanning probe microscope tips. Rev. Sci. Instrum. 2002, 73, 1337–1339. [Google Scholar] [CrossRef]
- Lucier, A.S. Preparation and Characterization of Tungsten Tips Suitable for Molecular Electronics Studies. Master’s Thesis, McGill University, Montreal, QC, Canada, 2004. [Google Scholar]
- Le, D.-C.; Duong, T.-H.; Kim, H.-C. Design of characteristic parameters for controlling tungsten tip profile during electrochemical etching. J. Mech. Sci. Technol. 2014, 28, 1833–1839. [Google Scholar] [CrossRef]
- Feng, H.; Xu, C.; Wang, Y.; Wei, Z.; Li, X.; Kan, Y.; Zhang, Y. Effects of electrolyte concentration on the morphology control of gold nanotips in electrochemical etching. J. Appl. Electrochem. 2020, 50, 799–807. [Google Scholar] [CrossRef]
- Zahl, P. Tip Etch Control: How to Manual, It Is a Part of the Gxsm Project, Rev 1.0. 2015. Available online: http://gxsm.sourceforge.net/ (accessed on 5 January 2021).
- Knápek, A.; Sýkora, J.; Chlumská, J.; Sobola, D. Programmable set-up for electrochemical preparation of STM tips and ultra-sharp field emission cathodes. Microelectron. Eng. 2017, 173, 42–47. [Google Scholar] [CrossRef]
- Schmucker, S.W.; Kumar, N.; Abelson, J.; Daly, S.R.; Girolami, G.S.; Bischof, M.; Jaeger, D.L.; Reidy, R.F.; Gorman, B.P.; Alexander, J.D.; et al. Field-directed sputter sharpening for tailored probe materials and atomic-scale lithography. Nat. Commun. 2012, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastiman, F.; Cullis, A.G.; Hopkinson, M.; Briston, K.J. Two step optimized process for scanning tunneling microscopy tip fabrication. J. Vac. Sci. Technol. B 2010, 28, 371. [Google Scholar] [CrossRef]
- van der Heijden, N.; Frank Westhoek, I.S.; Slot, M. Electrochemical Etching and Field-Directed Sputter Sharpnening Production of Atomically Sharp Tungsten Tips for Scanning Tunneling Microscopy. Bachelor’s Thesis, Utrecht University, Utrecht, The Netherlands, 2015. [Google Scholar]
S. No | Voltage (V) | Tip Diameter (nm) | Etching Time (min) | Cone Angle (deg) | |||
---|---|---|---|---|---|---|---|
2 M | 4 M | 2 M | 4 M | 2 M | 4 M | ||
1 | 3.8 | 94 | - | 18 | - | 28° | - |
2 | 4.9 | - | 119 | 13 | 4 | 35° | 20° |
3 | 6.6 | 88 | 58 | 9 | 4 | 31° | 14° |
4 | 7.3 | 91 | 41 | 7 | 3 | 37° | 14° |
5 | 8.5 | - | - | 8 | - | 37° | - |
6 | 9.2 | - | 13 | 7 | 2 | 34° | 19° |
7 | 10.5 | - | - | 7 | - | - | - |
8 | 11.2 | - | - | 6 | - | - | - |
9 | 12.5 | 63 | - | 3 | - | 23° | - |
S. No | Repeated Sample 3 | Repeated Sample 9 | ||||||
---|---|---|---|---|---|---|---|---|
Voltage (V) | Cone Angle (deg) | Tip Diameter (nm) | Etching Time (min) | Voltage (V) | Cone Angle (deg) | Tip Diameter (nm) | Etching Time (min) | |
1 | 6.6 | 54° | 21 | 12 | 12.5 | 22° | 56 | 4 |
2 | 6.6 | 34° | 27 | 9 | 12.5 | 23° | 45 | 3 |
3 | 6.6 | 65° | 10 | 10 | 12.5 | 28° | 88 | 4 |
4 | 6.6 | 71° | 16 | 12 | 12.5 | 38° | 32 | 5 |
5 | 6.6 | 41° | 73 | 13 | 12.5 | 28° | 71 | 3 |
6 | 6.6 | 48° | 17 | 10 | 12.5 | 36° | 92 | 2 |
7 | 6.6 | 37° | 33 | 13 | 12.5 | 48° | 117 | 5 |
S. No | Voltage (V) | Tip Diameter (nm) | Etching Time (min) | Cone Angle (deg) | |||
---|---|---|---|---|---|---|---|
2 M | 4 M | 2 M | 4 M | 2 M | 4 M | ||
1 | 6.6 | 72 | 21 | 9 | 2 | 35° | 26° |
- | 37 | 36° | 24° | ||||
2 | 7.3 | 87 | 30 | 7 | 2 | 31° | 24° |
- | 28 | 20° | 26° | ||||
3 | 8.5 | 97 | 18 | 6 | 1 | 25° | 28° |
54 | 37 | 38° | 25° | ||||
4 | 9.2 | 115 | 18 | 5 | 1 | 23° | 15° |
- | 33 | 22° | 23° |
S. No | Repeated Sample 1 | Repeated Sample 3 | ||||||
---|---|---|---|---|---|---|---|---|
Voltage (V) | Cone Angle (deg) | Tip Diameter (nm) | Etching Time (min) | Voltage (V) | Cone Angle (deg) | Tip Diameter (nm) | Etching Time (min) | |
1 | 6.6 | 37° | 42 | 11 | 8.5 | 23° | 18 | 4 |
12° | - | 25° | 16 | |||||
2 | 6.6 | 40° | 28 | 7 | 8.5 | 32° | 30 | 6 |
34° | 52 | 42° | 51 | |||||
3 | 6.6 | 45° | 27 | 5 | 8.5 | 42° | 20 | 5 |
22° | 69 | 26° | 18 | |||||
4 | 6.6 | 35° | 24 | 5 | 8.5 | 29° | 44 | 4 |
16° | 59 | 33° | 84 | |||||
5 | 6.6 | 25° | 39 | 6 | 8.5 | 30° | 39 | 4 |
24° | 16 | 23° | 92 |
S. No | Voltage (V) | Tip Diameter (nm) | Etching Time (min) | Cone Angle (deg) | |||
---|---|---|---|---|---|---|---|
2 M | 4 M | 2 M | 4 M | 2 M | 4 M | ||
1 | 6.6 | 25 | 18 | 9 | 8 | 39° | 13° |
2 | 8.5 | 38 | 29 | 8 | 6 | 38° | 41° |
3 | 10.5 | 51 | 25 | 6 | 4 | 26° | 23° |
4 | 12.5 | 31 | 28 | 5 | 3 | 31° | 13° |
S. No | Repeated Sample 1 | Repeated Sample 4 | ||||||
---|---|---|---|---|---|---|---|---|
Voltage (V) | Cone Angle (deg) | Tip Diameter (nm) | Etching Time (min) | Voltage (V) | Cone Angle (deg) | Tip Diameter (nm) | Etching Time (min) | |
1 | 6.6 | 59° | 12 | 8 | 12.5 | 33° | 10 | 5 |
2 | 6.6 | 42° | 10 | 6 | 12.5 | 40° | 9 | 4 |
3 | 6.6 | 48° | 11 | 8 | 12.5 | 31° | 10 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Ullah, N.; Riaz, A.A.; Zahir, M.Z.; Khan, Z.A.; Shah, S.S.A.; Rehman Siddiqi, M.U.; Hassan, M.T. Development and Comparative Analysis of Electrochemically Etched Tungsten Tips for Quartz Tuning Fork Sensor. Micromachines 2021, 12, 286. https://doi.org/10.3390/mi12030286
Ali A, Ullah N, Riaz AA, Zahir MZ, Khan ZA, Shah SSA, Rehman Siddiqi MU, Hassan MT. Development and Comparative Analysis of Electrochemically Etched Tungsten Tips for Quartz Tuning Fork Sensor. Micromachines. 2021; 12(3):286. https://doi.org/10.3390/mi12030286
Chicago/Turabian StyleAli, Ashfaq, Naveed Ullah, Asim Ahmad Riaz, Muhammad Zeeshan Zahir, Zuhaib Ali Khan, S. Shaukat Ali Shah, Muftooh Ur Rehman Siddiqi, and Muhammad Tahir Hassan. 2021. "Development and Comparative Analysis of Electrochemically Etched Tungsten Tips for Quartz Tuning Fork Sensor" Micromachines 12, no. 3: 286. https://doi.org/10.3390/mi12030286
APA StyleAli, A., Ullah, N., Riaz, A. A., Zahir, M. Z., Khan, Z. A., Shah, S. S. A., Rehman Siddiqi, M. U., & Hassan, M. T. (2021). Development and Comparative Analysis of Electrochemically Etched Tungsten Tips for Quartz Tuning Fork Sensor. Micromachines, 12(3), 286. https://doi.org/10.3390/mi12030286