Numerical Evaluation and Experimental Test on a New Giant Magnetostrictive Transducer with Low Heat Loss Design
Abstract
:1. Introduction
2. Scheme of Giant Magnetostrictive Transducer
3. Physical Model and Finite Element Analysis
3.1. Analysis of the Parallel Excitation Coil
3.2. Analysis and Design of Internal Magnetic Circuit
3.3. Analysis and Design of External Magnetic Circuit
4. Experimental Study of the Transducer
4.1. Experimental Setup of the Transducer
4.2. Temperature Characteristic Tests
4.3. Frequency Response Tests
4.4. Resolution Tests
4.5. Hysteresis Characteristics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Huang, W.; Wang, B.; Weng, L. High-frequency output characteristics of giant magnetostrictive transducer. IEEE Trans. Magn. 2019, 55, 8202305. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, Y.; Luo, Z.; Li, R.; Tai, M.; Wu, C. Characteristic investigation of a magnetostrictive fast switching valve for digital hydraulic transducer. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2021, 235, 190–206. [Google Scholar]
- Kim, D.; Lee, C. Development of variable preload system for machine tool spindle using giant magnetostrictive material Terfenol-D transducer. J. Intell. Mater. Syst. Struct. 2020, 31, 2304–2311. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, Z.W.; Sheng, H.; Xu, J. Nonlinear dynamic characteristics and control of giant magnetostrictive ultrasonic transducer. J. Supercond. Nov. Magn. 2019, 32, 2045–2049. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Hu, W.; Sun, T.; Hu, J. Design optimization of a giant magnetostrictive driving system for large stroke application considering vibration suppression in working process. Mech. Syst. Signal Process. 2020, 138, 106560. [Google Scholar] [CrossRef]
- Liu, P.; Kong, M.; Diao, W.; Feng, Z. High-speed giant magnetostrictive actuator using laminated silicon steel core. Rev. Sci. Instrum. 2021, 92, 055004. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, Y.; Zu, J. A multi-impact frequency up-converted magnetostrictive transducer for harvesting energy from finger tapping. Int. J. Mech. Sci. 2017, 126, 235–241. [Google Scholar] [CrossRef]
- Narayanan, M.; Arjun, V.; Kumar, A.; Mukhopadhyay, C.K. Development of in-bore magnetostrictive transducer for ultrasonic guided wave based-inspection of steam generator tubes of PFBR. Ultrasonics 2020, 106, 106148. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Feng, P.; Yu, D.; Wu, Z. Investigations on a mathematical model for optimum impedance compensation of a giant magnetostrictive ultrasonic transducer and its resonance characteristics. Ultrasonics 2021, 110, 106286. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Lv, L. Magnetic Circuit Optimization Design of Giant Magnetostrictive Transducer. Sci. Eng. Res. Cent. 2015, 1, 389–396. [Google Scholar]
- Kwak, Y.; Kim, S.; Ahn, J. Improvement of positioning accuracy of magnetostrictive transducer by means of built-in air cooling and temperature control. J. Precis. Eng. Manuf. 2011, 12, 829–834. [Google Scholar] [CrossRef]
- Huang, W.; Gao, C.; Li, Y.; Wang, B. Experimental and calculating analysis of high-frequency magnetic energy losses for Terfenol-D magnetostrictive material. IEEE Trans. Magn. 2018, 54, 1–4. [Google Scholar] [CrossRef]
- Niu, M.; Yang, Y.; Meng, G. Dynamic modelling of magnetostrictive transducer with fully coupled magneto-mechanical effects and various eddy-current losses. Sens. Actuators A Phys. 2017, 258, 163–173. [Google Scholar] [CrossRef]
- Xavier, M. Design of a magnetostrictive transducer considering magnetic biasand ohmic heat. Int. J. Appl. Electromagn. Mech. 2014, 45, 867–871. [Google Scholar]
- Ju, X.; Lu, J.; Jin, H. Study on heat transfer characteristics and thermal error suppression method of cylindrical giant magnetostrictive actuator for ball screw preload. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2021, 235, 782–794. [Google Scholar] [CrossRef]
- Liu, H.F.; Gao, S.; Wang, H.Y.; Yang, G.Z.; Zhang, Y. Study on eddy current loss characteristics of precision giant magnetostrictive actuator considering magnetic field distribution. Int. J. Nanomanuf. 2019, 15, 343–354. [Google Scholar] [CrossRef]
- Zhao, Z.; Sui, X. Temperature compensation design and experiment for a giant magnetostrictive actuator. Sci. Rep. 2021, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Gandomzadeh, D.; Abbaspour-Fard, M. Numerical study of the effect of core geometry on the performance of a magnetostrictive transducer. J. Magn. Magn. Mater. 2020, 513, 166823. [Google Scholar] [CrossRef]
- Shen, W.; Bo, W.; Hui, L. Dynamic response of the output force of giant magnetostrictive materials. Int. J. Mech. Mater. Des. 2020, 16, 685–691. [Google Scholar] [CrossRef]
- Sun, X.; Yang, B. A new methodology for developing flexure-hinged displacement amplifiers with micro-vibration suppression for a giant magnetostrictive micro drive system. Sens. Actuators A Phys. 2017, 263, 30–43. [Google Scholar] [CrossRef]
- Zhou, G. Equivalent self inductance formula of N coupled parallel coils. Phys. Bull. 2014, 7, 122–127. [Google Scholar]
- Crisnejo, G.; Gallo, E. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet theorem. A unified treatment. Phys. Rev. D 2018, 97, 124016. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Zhang, Z.; Wang, J.; Sun, X.; Hu, W. Numerical Evaluation and Experimental Test on a New Giant Magnetostrictive Transducer with Low Heat Loss Design. Micromachines 2021, 12, 1397. https://doi.org/10.3390/mi12111397
Bai Z, Zhang Z, Wang J, Sun X, Hu W. Numerical Evaluation and Experimental Test on a New Giant Magnetostrictive Transducer with Low Heat Loss Design. Micromachines. 2021; 12(11):1397. https://doi.org/10.3390/mi12111397
Chicago/Turabian StyleBai, Zhuan, Zonghe Zhang, Ju Wang, Xiaoqing Sun, and Wei Hu. 2021. "Numerical Evaluation and Experimental Test on a New Giant Magnetostrictive Transducer with Low Heat Loss Design" Micromachines 12, no. 11: 1397. https://doi.org/10.3390/mi12111397
APA StyleBai, Z., Zhang, Z., Wang, J., Sun, X., & Hu, W. (2021). Numerical Evaluation and Experimental Test on a New Giant Magnetostrictive Transducer with Low Heat Loss Design. Micromachines, 12(11), 1397. https://doi.org/10.3390/mi12111397