A New Design of Porosity Gradient Ti-6Al-4V Encapsulated Hydroxyapatite Dual Materials Composite Scaffold for Bone Defects
Abstract
:1. Introduction
2. Methods
2.1. Experimental Model
2.2. Design of Scaffold for Bone Defect
2.3. Finite Element Analysis
2.4. Ti-6Al-4V Powder Melt Processing and Stress Relief Annealing
2.5. Material Properties Measurement
3. Results and Discussion
3.1. Autologous Bone Graft
3.2. Single-Porosity and Porosity-Gradient Ti-6Al-4V Scaffolds
3.3. Ti-6Al-4V Combined with HAp Material for Pore Gradient Composite Scaffold Design
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bobyn, J.D.; Pilliar, R.M.; Cameron, H.U.; Weatherly, G.C. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 1980, 150, 263–270. [Google Scholar] [CrossRef]
- Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment. Mater. Sci. Eng. C 2016, 59, 690–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitz, J.P.; Hollinger, J.O. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin. Orthop. Relat. Res. 1986, 205, 299–308. [Google Scholar] [CrossRef]
- Loi, F.; Córdova, L.A.; Pajarinen, J.; Lin, T.-H.; Yao, Z.; Goodman, S.B. Inflammation, fracture and bone repair. Bone 2016, 86, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Iulian, N. Bone Grafts: Procedures, Complications and Alternatives; Nova Science Publishers: Hauppauge, NY, USA, 2013. [Google Scholar]
- Arrington, E.D.; Smith, W.J.; Chambers, H.G.; Bucknell, A.L.; Davino, N.A. Complications of Iliac Crest Bone Graft Harvesting. Clin. Orthop. Relat. Res. 1996, 329, 300–309. [Google Scholar] [CrossRef]
- Moore, W.R.; Graves, S.E.; Bain, G.I. Synthetic bone graft substitutes. ANZ J. Surg. 2001, 71, 354–361. [Google Scholar] [CrossRef]
- Vecchio, K.S.; Zhang, X.; Massie, J.B.; Wang, M.; Kim, C.W. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater. 2007, 3, 910–918. [Google Scholar] [CrossRef]
- Best, S.M.; Porter, A.E.; Thian, E.S.; Huang, J. Huang, Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc. 2008, 28, 1319–1327. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Q.; Liu, S.; Guo, C.; Gao, Q.; Tang, M. Comparison of mid-term outcomes of posterior or postero-anterior approach using different bone grafting in children with lumbar tuberculosis. Medicine 2019, 98, e14760. [Google Scholar] [CrossRef] [PubMed]
- Gepreel, M.A.-H.; Niinomi, M. Biocompatibility of Ti-alloys for long-term implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Reilly, D.T.; Burstein, A.H. The elastic and ultimate properties of compact bone tissue. J. Biomech. 1975, 8, 393–405. [Google Scholar] [CrossRef]
- Hoffler, C.E.; Moore, K.E.; Kozloff, K.; Zysset, P.; Goldstein, S.A. Age, gender, and bone lamellae elastic moduli. J. Orthop. Res. 2000, 18, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Krishna, B.V.; Bose, S.; Bandyopadhyay, A. Low stiffness porous Ti structures for load-bearing implants. Acta Biomater. 2007, 3, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Surmeneva, M.A.; Surmenev, R.; Chudinova, E.A.; Koptioug, A.; Tkachev, M.S.; Gorodzha, S.N.; Rännar, L.-E. Fabrication of multiple-layered gradient cellular metal scaffold via electron beam melting for segmental bone reconstruction. Mater. Des. 2017, 133, 195–204. [Google Scholar] [CrossRef]
- Ataee, A.; Li, Y.; Fraser, D.; Song, G.; Wen, C. Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater. Des. 2018, 137, 345–354. [Google Scholar] [CrossRef]
- Zhao, S.; Li, S.; Wang, S.; Hou, W.; Li, Y.; Zhang, L.; Hao, Y.; Yang, R.; Misra, R.; Murr, L. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Mater. 2018, 150, 1–15. [Google Scholar] [CrossRef]
- Pobloth, A.-M.; Checa, S.; Razi, H.; Petersen, A.; Weaver, J.C.; Schmidt-Bleek, K.; Windolf, M.; Tatai, A.; Roth, C.P.; Schaser, K.-D.; et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci. Transl. Med. 2018, 10, eaam8828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, G.; Sharma, N.; Kumar, D.; Hegab, H. Design, development and tribological characterization of Ti–6Al–4V/hydroxyapatite composite for bio-implant applications. Mater. Chem. Phys. 2020, 243, 122662. [Google Scholar] [CrossRef]
- Fousová, M.; Vojtěch, D.; Kubásek, J.; Jablonská, E.; Fojt, J. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J. Mech. Behav. Biomed. Mater. 2017, 69, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Mercelis, P.; Kruth, J. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2006, 12, 254–265. [Google Scholar] [CrossRef]
- Schmidt, F.F.; Wood, R.A. Heat Treatment of Titanium and Titanium Alloys; NASA: Nasa Technical Memorandum; NASA: Washington, DC, USA, 1966. [Google Scholar]
- Ettefagh, A.H.; Zeng, C.; Guo, S.; Raush, J. Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing. Addit. Manuf. 2019, 28, 252–258. [Google Scholar] [CrossRef]
- Uhthoff, H.K.; Poitras, P.; Backman, D. Internal plate fixation of fractures: Short history and recent developments. J. Orthop. Sci. 2006, 11, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarapoom, W.; Puttapitukporn, T. Stress Distribution in Human Tibia Bones using Finite Element Analysis. Eng. J. 2016, 20, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.-T.; Lin, C.-H.; Huang, Y.-K.; Jang, J.; Lin, H.-K.; Kuo, C.-N.; Lin, D.-Y.; Huang, J. Design of Customize Interbody Fusion Cages of Ti64ELI with Gradient Porosity by Selective Laser Melting Process. Micromachines 2021, 12, 307. [Google Scholar] [CrossRef]
- Kutz, M. Standard Handbook of Biomedical Engineering & Design; McGraw-Hill Education: New York, NY, USA, 2003. [Google Scholar]
- Gushue, D.L.; Houck, J.; Lerner, A.L. Rabbit knee joint biomechanics: Motion analysis and modeling of forces during hopping. J. Orthop. Res. 2005, 23, 735–742. [Google Scholar] [CrossRef]
- Pérez, M.; Moreo, P.; García-Aznar, J.; Doblaré, M. Computational simulation of dental implant osseointegration through resonance frequency analysis. J. Biomech. 2008, 41, 316–325. [Google Scholar] [CrossRef]
- Bruni, S.; Martinesi, M.; Stio, M.; Treves, C.; Bacci, T.; Borgioli, F. Effects of surface treatment of Ti–6Al–4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomater. 2005, 1, 223–234. [Google Scholar] [CrossRef] [PubMed]
Case Number | Scaffold Material Properties | Porosity (%) | Bone Defect Size (mm) | Mesh Elements | |
---|---|---|---|---|---|
Scaffold Outside | Scaffold Inside | ||||
1 | Cortical Bone | Cancellous Bone | - | 5 | 110,297 |
2 | Ti-6Al-4V | - | * Gradient | 10 | 912,873 |
3 | Ti-6Al-4V | - | 50 | 10 | 2,219,942 |
4 | Ti-6Al-4V | - | 70 | 10 | 1,368,419 |
5 | Ti-6Al-4V | Ti-6Al-4V | Gradient | 5 | 837,930 |
6 | Ti-6Al-4V | HAp | Gradient | 5 | 829,178 |
Material | E (GPa) | ν | ρ (g/cm3) | σyield (GPa) |
---|---|---|---|---|
Cortical Bone [12] | 17 | 0.3 | 1.7 | -- |
Cancellous Bone [13] | 5 | 0.2 | 1.1 | -- |
Bone Marrow [25] | 3.0 × 10−7 | 0.45 | - | -- |
Ti-6Al-4V [26] | 110 | 0.31 | 4.43 | 0.99 |
Hydroxyapatite [27] | 10 | 0.3 | 3.1 | 0.043 |
Material | Heating Rate (°C/min) | Annealing Temperature (°C) | Duration Time (min) | Cooling Method |
---|---|---|---|---|
Ti-6Al-4V | 2 | 545 | 105 | Air Cooling |
Maximum | b | c | d | e | f |
---|---|---|---|---|---|
Equivalent Stress (MPa) | -- | 16.286 | 3.355 | 3.332 | 3.661 |
Equivalent Strain (%) | -- | 0.159 | 0.057 | 0.019 | 0.114 |
Total Deformation (mm) | 0.077 | -- | -- | -- | -- |
Maximum | a | b | c | d | e | f | g | h | i |
---|---|---|---|---|---|---|---|---|---|
Equivalent Stress (MPa) | 122.190 | 5.342 | 6.372 | 38.729 | 3.704 | 4.137 | 28.068 | 4.200 | 5.355 |
Equivalent Strain (%) | 0.113 | 0.032 | 0.038 | 0.036 | 0.021 | 0.032 | 0.026 | 0.025 | 0.032 |
Maximum | a | b | c |
---|---|---|---|
Equivalent Stress (MPa) | 36.331 | 3.887 | 5.019 |
Equivalent Strain (%) | 0.038 | 0.023 | 0.030 |
Maximum | a | b | c | d | e | f |
---|---|---|---|---|---|---|
Equivalent Stress (MPa) | 27.862 | 27.862 | 6.331 | 27.862 | 2.6 | 2.833 |
Equivalent Strain (%) | 0.065 | 0.026 | 0.065 | 0.065 | 0.052 | 0.028 |
Sample Type | Measuring Range | Specimen 1 (μm) | Specimen 2 (μm) | Specimen 3 (μm) | Average (μm) |
---|---|---|---|---|---|
Original Specimen | Scope (a) | 262.0 | 257.11 | 297.51 | 272.21 |
Scope (b) | 261.76 | 285.18 | 276.67 | 274.54 | |
Scope (c) | 277.92 | 279.65 | 283.16 | 280.24 | |
Annealed Specimen | Scope (a) | 245.8 | 255.12 | 291.16 | 264.03 |
Scope (b) | 262.43 | 260.09 | 277.81 | 266.78 | |
Scope (c) | 267.03 | 271.28 | 291.16 | 276.49 |
- | Original Specimen | Annealed Specimen | ||
---|---|---|---|---|
Results term | Average | Standard Deviation | Average | Standard Deviation |
Young’s modulus (GPa) | 126.44 | 12.94 | 131.46 | 8.53 |
Hardness SI unit (GPa) | 3.90 | 0.27 | 4.12 | 0.15 |
Sample Type | Load (N) | Strain (%) | ||||
---|---|---|---|---|---|---|
- | Specimen 1 | Specimen 2 | Specimen 3 | Average | Standard Deviation | |
Original Specimen | 50 | 1.94 | 1.32 | 0.99 | 1.42 | 0.48 |
100 | 2.61 | 1.72 | 1.36 | 1.89 | 0.64 | |
150 | 3.08 | 2.06 | 1.67 | 2.27 | 0.73 | |
Annealed Specimen | 50 | 0.58 | 0.58 | 0.59 | 0.58 | 0.01 |
100 | 0.87 | 0.89 | 0.90 | 0.89 | 0.02 | |
150 | 1.12 | 1.14 | 1.13 | 1.13 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, C.-T.; Hsu, W.-H.; Cheng, Y.-S.; Wen, Z.-H.; Chen, W.-F. A New Design of Porosity Gradient Ti-6Al-4V Encapsulated Hydroxyapatite Dual Materials Composite Scaffold for Bone Defects. Micromachines 2021, 12, 1294. https://doi.org/10.3390/mi12111294
Pan C-T, Hsu W-H, Cheng Y-S, Wen Z-H, Chen W-F. A New Design of Porosity Gradient Ti-6Al-4V Encapsulated Hydroxyapatite Dual Materials Composite Scaffold for Bone Defects. Micromachines. 2021; 12(11):1294. https://doi.org/10.3390/mi12111294
Chicago/Turabian StylePan, Cheng-Tang, Wen-Hsin Hsu, Yu-Shun Cheng, Zhi-Hong Wen, and Wen-Fan Chen. 2021. "A New Design of Porosity Gradient Ti-6Al-4V Encapsulated Hydroxyapatite Dual Materials Composite Scaffold for Bone Defects" Micromachines 12, no. 11: 1294. https://doi.org/10.3390/mi12111294
APA StylePan, C.-T., Hsu, W.-H., Cheng, Y.-S., Wen, Z.-H., & Chen, W.-F. (2021). A New Design of Porosity Gradient Ti-6Al-4V Encapsulated Hydroxyapatite Dual Materials Composite Scaffold for Bone Defects. Micromachines, 12(11), 1294. https://doi.org/10.3390/mi12111294