Design of Broadband Flat Optical Frequency Comb Based on Cascaded Sign-Alternated Dispersion Tellurite Microstructure Fiber
Abstract
:1. Introduction
2. Generation of Electro-Optic Seed Comb
3. Design and Optimization of CSAD-TMF
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, D.J.; Diddams, S.A.; Ranka, J.K.; Stentz, A.; Windeler, R.S.; Hall, J.L.; Cundiff, S.T. Carrier-envelope phase control of femtosecond Mode-Locked lasers and direct optical frequency synthesis. Science 2000, 288, 635. [Google Scholar] [CrossRef] [Green Version]
- Coddington, I.; Swann, W.C.; Nenadovic, L.; Newbury, N.R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 2009, 3, 351–356. [Google Scholar] [CrossRef]
- Steinmetz, T.; Wilken, T.; Araujo-Hauck, C.; Holzwarth, R.; Hänsch, T.W.; Pasquini, L.; Manescau, A.; D’Odorico, S.; Murphy, M.T.; Kentischer, T.; et al. Laser frequency combs for astronomical observations. Science 2008, 321, 1335. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, B.S.; Chun, B.J.; Kang, H.J.; Jang, Y.; Kim, Y.W.; Kim, Y.; Kim, S. Comb-rooted multi-channel synthesis of ultra-narrow optical frequencies of few Hz linewidth. Sci. Rep. 2019, 9, 7652. [Google Scholar] [CrossRef]
- Akamatsu, D.; Inaba, H.; Hosaka, K.; Yasuda, M.; Onae, A.; Suzuyama, T.; Amemiya, M.; Hong, L. Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb. Appl. Phys. Express (APEX) 2014, 7, 12401. [Google Scholar] [CrossRef]
- Kashiwagi, K.; Kurokawa, T.; Okuyama, Y.; Mori, T.; Tanaka, Y.; Yamamoto, Y.; Hirano, M. Direct generation of 12.5-GHz-spaced optical frequency comb with ultrabroad coverage in near-infrared region by cascaded fiber configuration. Opt. Express 2016, 24, 8120–8131. [Google Scholar] [CrossRef] [PubMed]
- Qu, K.; Zhao, S.; Li, X.; Zhu, Z.H.; Liang, D. Ultra-Flat and broadband optical frequency comb generator via a single mach–zehnder modulator. IEEE Photonics Technol. Lett. 2016, 29, 255–258. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Yin, K.; Li, Y.; Zheng, X.; Jiang, T. Sub-100 fs all-fiber broadband electro-optic optical frequency comb at 1.5 μm. Opt. Express 2020, 28, 34761–34771. [Google Scholar] [CrossRef] [PubMed]
- Grudinin, I.S.; Huet, V.; Yu, N.; Matsko, A.B.; Gorodetsky, M.L.; Maleki, L. High-contrast Kerr frequency combs. Optica 2017, 4, 434–437. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Zheng, Y.; Li, G.; Hu, H.; Pu, M.; Oxenløwe, L.K.; Frandsen, L.H.; Li, X.; Guan, X. High-Q titanium dioxide micro-ring resonators for integrated nonlinear photonics. Opt. Express 2020, 28, 39084–39092. [Google Scholar] [CrossRef]
- Tang, Z.; Li, Y.; Yao, J.; Pan, S. Photonics-based microwave frequency mixing: Methodology and applications. Laser Photonics Rev. 2020, 14, 1800350. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, C.; Leaird, D.E.; Weiner, A.M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat. Photonics 2007, 1, 463–467. [Google Scholar] [CrossRef]
- Lukens, J.M.; Lu, H.H.; Qi, B.; Lougovski, P.; Weiner, A.M.; Williams, B.P. All-optical frequency processor for networking applications. J. Lightwave Technol. 2020, 38, 1678–1687. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Fan, X.; Wang, S.; He, Z. Wideband and high-resolution spectroscopy based on an ultra-fine electro-optic frequency comb with seed lightwave selection via injection locking. Opt. Lett. 2021, 46, 1876–1879. [Google Scholar] [CrossRef]
- Sakamoto, T.; Kawanishi, T.; Izutsu, M. Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator. Opt. Lett. 2007, 32, 1515–1517. [Google Scholar] [CrossRef]
- Wu, R.; Torres-Company, V.; Leaird, D.E.; Weiner, A.M. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation. Opt. Express 2013, 21, 6045–6052. [Google Scholar] [CrossRef]
- Torres-Company, V.; Lancis, J.; Andrés, P. Lossless equalization of frequency combs. Opt. Lett. 2008, 33, 1822–1824. [Google Scholar] [CrossRef]
- Sharma, V.; Singh, S.; Anashkina, E.A.; Andrianov, A.V. Demonstration of optical frequency comb generation using four-wave mixing in highly nonlinear fiber. Optik 2021, 241, 166948. [Google Scholar] [CrossRef]
- Zia, H.; Lüpken, N.M.; Hellwig, T.; Fallnich, C.; Boller, K. Supercontinuum generation in media with sign-alternated dispersion. Laser Photonics Rev. 2020, 14, 2000031. [Google Scholar] [CrossRef]
- Yang, T.; Dong, J.; Liao, S.; Huang, D.; Zhang, X. Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers. Opt. Express 2013, 21, 8508–8520. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Joly, N.Y.; Finger, M.A.; Babic, F.; Wong, G.K.L.; Travers, J.C.; Russell, P.S.J. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre. Nat. Photonics 2015, 9, 133–139. [Google Scholar] [CrossRef]
- Cheng, T.; Nagasaka, K.; Tuan, T.H.; Xue, X.; Matsumoto, M.; Tezuka, H.; Suzuki, T.; Ohishi, Y. Mid-infrared supercontinuum generation spanning 2.0 to 15.1μm in a chalcogenide step-index fiber. Opt. Lett. 2016, 41, 2117–2120. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Yamanaka, M.; Sonnenschein, V.; Tomita, H.; Iguchi, T.; Sato, A.; Oh-Hara, T.; Nishizawa, N. Highly coherent tunable mid-infrared frequency comb pumped by supercontinuum at 1 µm. Appl. Phys. Express 2016, 10, 12503. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.; Duan, Z.; Gao, W.; Yan, X.; Suzuki, T.; Ohishi, Y. Dispersion engineering of tellurite holey fiber with holes formed by two glasses for highly nonlinear applications. Appl. Phys. B Lasers Opt. 2011, 105, 681–684. [Google Scholar] [CrossRef]
- Klimczak, M.; Michalik, D.; Stępniewski, G.; Karpate, T.; Cimek, J.; Forestier, X.; Kasztelanic, R.; Pysz, D.; Stępień, R.; Buczyński, R. Coherent supercontinuum generation in tellurite glass regular lattice photonic crystal fibers. J. Opt. Soc. Am. B 2019, 36, A112–A124. [Google Scholar] [CrossRef]
- Jia, Z.; Yao, C.; Jia, S.; Wang, F.; Wang, S.; Zhao, Z.; Qin, G.; Ohishi, Y.; Qin, W. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber. Appl. Phys. Lett. 2017, 110, 261106. [Google Scholar] [CrossRef]
- Huang, C.; Liao, M.; Bi, W.; Li, X.; Hu, L.; Zhang, L.; Wang, L.; Qin, G.; Xue, T.; Chen, D.; et al. Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion. Photonics Res. 2018, 6, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Huang, Y.; Jia, Z.; Yao, C.; Qin, G.; Ohishi, Y.; Qin, W. Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for Optical-Frequency comb generation. J. Lightwave Technol. 2018, 36, 2211–2215. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, H.; Boppart, S.A. Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. Opt. Lett. 2012, 37, 2172–2174. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson, W.J.; Stolen, R.H.; Johnson, A.M. Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 1985, 10, 457–459. [Google Scholar] [CrossRef]
- Al-Kadry, A.; Amraoui, M.E.; Messaddeq, Y.; Rochette, M. Two octaves mid-infrared supercontinuum generation in As2Se3 microwires. Opt. Express 2014, 22, 31131–31137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genty, G.; Coen, S.; Dudley, J.M. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar]
Zone | ||||||
---|---|---|---|---|---|---|
ND TMF | 0.6 | 9.4601 | −0.0085 | 2.55 | 2.2255 | 1.5 |
AD TMF | 0.72 | −45.9939 | 0.0703 | 2.11 | 2.6896 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, G.; Fu, M.; Qi, J.; Pan, J.; Yi, W.; Li, X. Design of Broadband Flat Optical Frequency Comb Based on Cascaded Sign-Alternated Dispersion Tellurite Microstructure Fiber. Micromachines 2021, 12, 1252. https://doi.org/10.3390/mi12101252
Huang G, Fu M, Qi J, Pan J, Yi W, Li X. Design of Broadband Flat Optical Frequency Comb Based on Cascaded Sign-Alternated Dispersion Tellurite Microstructure Fiber. Micromachines. 2021; 12(10):1252. https://doi.org/10.3390/mi12101252
Chicago/Turabian StyleHuang, Guocheng, Meicheng Fu, Junli Qi, Jinghan Pan, Wenjun Yi, and Xiujian Li. 2021. "Design of Broadband Flat Optical Frequency Comb Based on Cascaded Sign-Alternated Dispersion Tellurite Microstructure Fiber" Micromachines 12, no. 10: 1252. https://doi.org/10.3390/mi12101252
APA StyleHuang, G., Fu, M., Qi, J., Pan, J., Yi, W., & Li, X. (2021). Design of Broadband Flat Optical Frequency Comb Based on Cascaded Sign-Alternated Dispersion Tellurite Microstructure Fiber. Micromachines, 12(10), 1252. https://doi.org/10.3390/mi12101252