Comparative Evaluation of Artificial Neural Networks and Data Analysis in Predicting Liposome Size in a Periodic Disturbance Micromixer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Data Recollection
2.3. Prediction Models
3. Results and Discussions
3.1. ANN Prediction Model
3.2. DA Prediction Model
3.3. Comparation Models
3.4. Experimental Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Sample | Frr | Tfrr mL/h | LZ nm | Sample | Frr | Tfrr mL/h | LZ nm |
---|---|---|---|---|---|---|---|
1 | 10.40 | 15.80 | 67.52 | 31 | 8.7 | 3.1 | 225.8 |
2 | 10.40 | 5.20 | 133.5 | 32 | 5.5 | 8.0 | 130 |
3 | 2.60 | 5.20 | 119.4 | 33 | 8.7 | 12.9 | 123.3 |
4 | 2.60 | 15.80 | 86.48 | 34 | 5.5 | 8.0 | 157.3 |
5 | 6.50 | 10.50 | 81.81 | 35 | 2.3 | 12.9 | 201.9 |
6 | 10.40 | 15.80 | 62.1 | 36 | 8.7 | 3.1 | 211.6 |
7 | 12 | 18 | 62.12 | 37 | 2.3 | 3.1 | 217 |
8 | 2.60 | 5.20 | 122.4 | 38 | 2.3 | 12.9 | 168 |
9 | 2.60 | 15.80 | 88.74 | 39 | 5.5 | 8.0 | 115.3 |
10 | 6.50 | 10.50 | 72.23 | 40 | 5.5 | 8.0 | 115.1 |
11 | 10.40 | 15.80 | 52.71 | 41 | 5.5 | 8.0 | 115.8 |
12 | 10.40 | 5.20 | 110.4 | 42 | 5.5 | 8.0 | 121.1 |
13 | 2.60 | 5.20 | 131.6 | 43 | 8.7 | 3.1 | 164.3 |
14 | 2.60 | 15.80 | 90.27 | 44 | 8.7 | 12.9 | 133.1 |
15 | 6.50 | 10.50 | 77.18 | 45 | 5.5 | 8.0 | 129.7 |
16 | 6.50 | 3.00 | 133.5 | 6 | 2.3 | 3.1 | 184.4 |
17 | 1 | 10.50 | 190.7 | 47 | 2.3 | 3.1 | 199.1 |
18 | 6.50 | 18.00 | 66.63 | 8 | 5.5 | 8.0 | 168.4 |
19 | 12.02 | 10.50 | 75.09 | 49 | 5.5 | 8.0 | 172 |
20 | 6.50 | 3.00 | 120.7 | 50 | 2.3 | 12.9 | 211.8 |
21 | 1 | 10.50 | 197 | 51 | 5.5 | 8.0 | 153 |
22 | 6.50 | 18.00 | 57.14 | 52 | 5.5 | 1.0 | 248.5 |
23 | 12.02 | 10.50 | 74.14 | 53 | 10.0 | 8.0 | 129.4 |
24 | 6.50 | 10.50 | 73.81 | 54 | 5.5 | 1.0 | 282.2 |
25 | 6.50 | 3.00 | 116 | 55 | 5.5 | 8.0 | 123.9 |
26 | 1 | 10.50 | 199.7 | 56 | 5.5 | 8.0 | 125.5 |
27 | 6.50 | 18.00 | 52.14 | 57 | 5.5 | 15.0 | 139 |
28 | 1 | 18 | 170.8 | 58 | 1.0 | 8.0 | 334.4 |
29 | 7 | 18 | 66.83 | 59 | 5.5 | 8.0 | 149.2 |
30 | 8.7 | 12.9 | 129.7 | 60 | 5.5 | 8.0 | 123.6 |
Calculation of R Multiple for the DA Model
Appendix C
References
- Banerjee, R. Liposomes: Applications in medicine. J. Biomater. Appl. 2001, 16, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Huang, L. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun. 1991, 179, 280–285. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997, 154, 123–140. [Google Scholar] [CrossRef]
- Gregoriadis, G.; Swain, C.; Wills, E.; Tavill, A. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1974, 303, 1313–1316. [Google Scholar] [CrossRef]
- Betz, G.; Aeppli, A.; Menshutina, N.; Leuenberger, H. In vivo comparison of various liposome formulations for cosmetic application. Int. J. Pharm. 2005, 296, 44–54. [Google Scholar] [CrossRef]
- Anwekar, H.; Patel, S.; Singhai, A. Liposome-as drug carriers. Int. J. Pharm. Life Sci. 2011, 2, 945–951. [Google Scholar]
- Mozafari, M.R. Liposomes: An overview of manufacturing techniques. Cell. Mol. Biol. Lett. 2005, 10, 711. [Google Scholar]
- Jiskoot, W.; Teerlink, T.; Beuvery, E.C.; Crommelin, D.J. Preparation of liposomes via detergent removal from mixed micelles by dilution. Pharm. Weekbl. 1986, 8, 259–265. [Google Scholar] [CrossRef]
- Kastner, E.; Verma, V.; Lowry, D.; Perrie, Y. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. Int. J. Pharm. 2015, 485, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Nagayasu, A.; Uchiyama, K.; Kiwada, H. The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 1999, 40, 75–87. [Google Scholar] [CrossRef]
- Shah, S.; Dhawan, V.; Holm, R.; Nagarsenker, M.S.; Perrie, Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020, 154–155, 102–122. [Google Scholar] [CrossRef]
- Sedighi, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Rapid optimization of liposome characteristics using a combined microfluidics and design-of-experiment approach. Drug Deliv. Transl. Res. 2019, 9, 404–413. [Google Scholar] [CrossRef]
- Balbino, T.A.; Aoki, N.T.; Gaperini, A.A.M.; Oliveira, C.L.P.; Azzoni, A.R.; Cavalcanti, L.P.; de la Torre, L.G. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem. Eng. J. 2013, 226, 423–433. [Google Scholar] [CrossRef]
- López, R.R.; Ocampo, I.; Sánchez, L.-M.; Alazzam, A.; Bergeron, K.-F.; Camacho-León, S.; Mounier, C.; Stiharu, I.; Nerguizian, V. Surface response based modeling of liposome characteristics in a periodic disturbance mixer. Micromachines 2020, 11, 235. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Pattern recognition. In Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; p. 128. [Google Scholar]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Almeida, J.S. Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol. 2002, 13, 72–76. [Google Scholar] [CrossRef]
- Karazi, S.; Issa, A.; Brabazon, D. Comparison of ANN and DoE for the prediction of laser-machined micro-channel dimensions. Opt. Lasers Eng. 2009, 47, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Shabanzadeh, P.; Shameli, K.; Ismail, F.; Mohagheghtabar, M. Application of artificial neural network (ann) for the prediction of size of silver nanoparticles prepared by green method. Dig. J. Nanomater. Biostruct. 2013, 8, 1133–1144. [Google Scholar]
- Shabanzadeh, P.; Senu, N.; Shameli, K.; Ismail, F.; Zamanian, A.; Mohagheghtabar, M. Prediction of silver nanoparticles’ diameter in montmorillonite/chitosan bionanocomposites by using artificial neural networks. Res. Chem. Intermed. 2015, 41, 3275–3287. [Google Scholar] [CrossRef]
- Mottaghi, S.; Nazari, M.; Fattahi, S.M.; Nazari, M.; Babamohammadi, S. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system. Biomed. Microdevices 2020, 22, 61. [Google Scholar] [CrossRef] [PubMed]
- Damiati, S.A.; Rossi, D.; Joensson, H.N.; Damiati, S. Artificial intelligence application for rapid fabrication of size-tunable PLGA microparticles in microfluidics. Sci. Rep. 2020, 10, 19517. [Google Scholar] [CrossRef]
- Lashkaripour, A.; Rodriguez, C.; Mehdipour, N.; Mardian, R.; McIntyre, D.; Ortiz, L.; Campbell, J.; Densmore, D. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 2021, 12, 25. [Google Scholar] [CrossRef]
- Rizkin, B.A.; Shkolnik, A.S.; Ferraro, N.J.; Hartman, R.L. Combining automated microfluidic experimentation with machine learning for efficient polymerization design. Nat. Mach. Intell. 2020, 2, 200–209. [Google Scholar] [CrossRef]
- Neuron Model–MATLAB & Simulink. Available online: https://www.mathworks.com/help/deeplearning/ug/neuron-model.html#bss323q-3 (accessed on 10 June 2021).
- López, R.R.; de Rubinat, P.G.F.; Sánchez, L.-M.; Alazzam, A.; Stiharu, I.; Nerguizian, V. Lipid fatty acid chain length influence over liposome physicochemical characteristics produced in a periodic disturbance mixer. In Proceedings of the 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO), Online, 28 July 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 324–328. [Google Scholar] [CrossRef]
- Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366. [Google Scholar] [CrossRef]
- Lan, W.; Li, S.; Luo, G. Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel. Chem. Eng. Sci. 2015, 134, 76–85. [Google Scholar] [CrossRef]
- Li, J.-Y.; Chow, T.W.; Yu, Y.-L. The estimation theory and optimization algorithm for the number of hidden units in the higher-order feedforward neural network. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 1229–1233. [Google Scholar] [CrossRef]
- Angelini, C. Regression Analysis; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Imbens, G.W.; Newey, W.K.; Ridder, G. Mean-Square-Error Calculations for Average Treatment Effects; Harvard University: Cambridge, MA, USA, 2005. [Google Scholar] [CrossRef]
- He, K.; Meeden, G. Selecting the number of bins in a histogram: A decision theoretic approach. J. Stat. Plan. Inference 1997, 61, 49–59. [Google Scholar] [CrossRef]
- Minitab Blog Editor. Regression Analysis: How Do I Interpret R-squared and Assess the Goodness-of-Fit? Available online: https://blog.minitab.com/en/adventures-in-statistics-2/regression-analysis-how-do-i-interpret-r-squared-and-assess-the-goodness-of-fit (accessed on 10 June 2021).
- Kasuya, E. On the Use of R and R Squared in Correlation and Regression. Ecol. Res. 2019, 34, 235–236. [Google Scholar] [CrossRef]
Variables | Units | Meaning |
---|---|---|
FRR (input) | - | The flow rate ratio is the fraction of flow between the water phase and solvent/lipid phase [27]. |
TFR (input) | ml/h | The total flow rate is the sum of flow between the water phase and solvent/lipid phase [28]. |
LZ (output) | nm | The liposome size is the average of three independent measurement repetitions of size distribution by intensity. |
MSE | R | |
---|---|---|
Training | 156.7893 | 0.98147 |
Validation | 290.50693 | 0.97436 |
Testing | 328.40462 | 0.95059 |
All | - | 0.97247 |
Model | R |
---|---|
DA | 0.8882 |
ANN | 0.97247 |
Sample | Frr | Tfrr mL/h | Measurement LZ nm | ANN LZ nm | Square Error | DA LZ nm | Square Error |
---|---|---|---|---|---|---|---|
1 | 10.40 | 5.20 | 120.2 | 121.02 | 0.674 | 103.083 | 292.99 |
2 | 12.02 | 10.5 | 73.8 | 74.988 | 1.412 | 92.99 | 368.26 |
3 | 6.5 | 10.5 | 77.24 | 78.980 | 3.030 | 80.995 | 14.100 |
4 | 5 | 18.0 | 64.7 | 64.288 | 0.169 | 61.009 | 13.623 |
5 | 3.3 | 3.1 | 199.1 | 199.08 | 0.000 | 164.774 | 1178.27 |
MSE | 1.057 | MSE | 373.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocampo, I.; López, R.R.; Camacho-León, S.; Nerguizian, V.; Stiharu, I. Comparative Evaluation of Artificial Neural Networks and Data Analysis in Predicting Liposome Size in a Periodic Disturbance Micromixer. Micromachines 2021, 12, 1164. https://doi.org/10.3390/mi12101164
Ocampo I, López RR, Camacho-León S, Nerguizian V, Stiharu I. Comparative Evaluation of Artificial Neural Networks and Data Analysis in Predicting Liposome Size in a Periodic Disturbance Micromixer. Micromachines. 2021; 12(10):1164. https://doi.org/10.3390/mi12101164
Chicago/Turabian StyleOcampo, Ixchel, Rubén R. López, Sergio Camacho-León, Vahé Nerguizian, and Ion Stiharu. 2021. "Comparative Evaluation of Artificial Neural Networks and Data Analysis in Predicting Liposome Size in a Periodic Disturbance Micromixer" Micromachines 12, no. 10: 1164. https://doi.org/10.3390/mi12101164
APA StyleOcampo, I., López, R. R., Camacho-León, S., Nerguizian, V., & Stiharu, I. (2021). Comparative Evaluation of Artificial Neural Networks and Data Analysis in Predicting Liposome Size in a Periodic Disturbance Micromixer. Micromachines, 12(10), 1164. https://doi.org/10.3390/mi12101164