Low Cost AIP Design in 5G Flexible Antenna Phase Array System Application
Abstract
1. Introduction
2. Patch Antenna Design
3. Array Antenna Design
4. Antenna Manufacturing and Experimental Measurement
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ateya, A.A.; Muthanna, A.; Gudkova, I.; Id, A.A.; Vybornova, A.; Koucheryavy, A. Development of Intelligent Core Network for Tactile Internet and Future Smart Systems. J. Sens. Acuator Netw. 2018, 7, 1. [Google Scholar] [CrossRef]
- Szeląg, B.; Drewnowski, J.; Łagód, G.; Majerek, D.; Dacewicz, E.; Fatone, F. Soft Sensor Application in Identification of the Activated Sludge Bulking Considering the Technological and Economical Aspects of Smart Systems Functioning. Sensors 2020, 20, 1941. [Google Scholar] [CrossRef] [PubMed]
- Grasso, C.; Schembra, G. A Fleet of MEC UAVs to Extend a 5G Network Slice for Video Monitoring with Low-Latency Constraints. J. Sens. Actuator Netw. 2019, 8, 3. [Google Scholar] [CrossRef]
- Patcharamaneepakorn, P.; Wu, S.; Wang, C.-X.; Aggoune, E.-H.M.; Alwakeel, M.M.; Ge, X.; Di Renzo, M.; Aggoune, H. Spectral, Energy, and Economic Efficiency of 5G Multicell Massive MIMO Systems With Generalized Spatial Modulation. IEEE Trans. Veh. Technol. 2016, 65, 9715–9731. [Google Scholar] [CrossRef]
- Patcharamaneepakorn, P.; Wang, C.X.; Fu, Y.; Aggoune, E.H.M.; Alwakeel, M.M.; Tao, X.; Ge, X. Quadrature Space-Frequency Index Modulation Communication Systems. IEEE Trans. Commun. 2017, 66, 3050–3064. [Google Scholar] [CrossRef]
- Kibaroglu, K.; Sayginer, M.; Rebeiz, G.M. A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a 2×2 Beamformer Flip-Chip Unit Cell. IEEE J. Solid-State Circuits 2018, 53, 1260–1274. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.Y.; Kim, J.; Park, D.; Choi, W.; Hong, W. An Optically Invisible Antenna-on-Display Concept for Millimeter-Wave 5G Cellular Devices. IEEE Trans. Antennas Propag. 2019, 67, 2942–2952. [Google Scholar] [CrossRef]
- Kumar, P.; Urooj, S.; Malibari, A.A. Design of Quad-Port Ultra-Wideband Multiple-Input-Multiple-Output Antenna with Wide Axial-Ratio Bandwidth. Sensors 2020, 20, 1174. [Google Scholar] [CrossRef]
- Ullah, S.; Ruan, C.; Sadiq, M.S.; Haq, T.U.; Fahad, A.K.; He, W. Super Wide Band, Defected Ground Structure (DGS), and Stepped Meander Line Antenna for Communication Applications. Sensors 2020, 20, 1735. [Google Scholar] [CrossRef]
- Hamberger, G.F.; Trummer, S.; Siart, U.; Eibert, T.F. A Planar Dual-Polarized Microstrip 1-D-Beamforming Antenna Array for the 24-GHz Band. IEEE Trans. Antennas Propag. 2016, 65, 142–149. [Google Scholar] [CrossRef]
- Chiang, W.-Y.; Ku, C.-H.; Chen, C.-A.; Wang, L.-Y.; Abu, P.A.; Rao, P.-Z.; Liu, C.-K.; Liao, C.-H.; Chen, S.-L. A Power-Efficient Multiband Planar USB Dongle Antenna for Wireless Sensor Networks. Sensors 2019, 19, 2568. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Lee, H.-Y.; Chen, C.-A.; Huang, H.-Y.; Luo, C.-H. Wireless Body Sensor Network with Adaptive Low-Power Design for Biometrics and Healthcare Applications. IEEE Syst. J. 2009, 3, 398–409. [Google Scholar] [CrossRef]
- Chen, C.-A.; Chen, S.-L.; Huang, H.-Y.; Luo, C.-H. An Asynchronous Multi-Sensor Micro Control Unit for Wireless Body Sensor Networks (WBSNs). Sensors 2011, 11, 7022–7036. [Google Scholar] [CrossRef]
- Wang, L.-H.; Zhang, W.; Guan, M.-H.; Jiang, S.-Y.; Fan, M.-H.; Abu, P.A.; Chen, C.-A.; Chen, S.-L. A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System. Sensors 2019, 19, 4996. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-A.; Wu, C.; Abu, P.A.; Chen, S.-L. VLSI Implementation of an Efficient Lossless EEG Compression Design for Wireless Body Area Network. Appl. Sci. 2018, 8, 1474. [Google Scholar] [CrossRef]
- Chen, C.-A.; Chen, S.-L.; Huang, H.-Y.; Luo, C.-H. An Efficient Micro Control Unit with a Reconfigurable Filter Design for Wireless Body Sensor Networks (WBSNs). Sensors 2012, 12, 16211–16227. [Google Scholar] [CrossRef]
- Chen, S.-L.; Wu, G.-S. A Cost and Power Efficient Image Compressor VLSI Design with Fuzzy Decision and Block Partition for Wireless Sensor Networks. IEEE Sens. J. 2017, 17, 4999–5007. [Google Scholar] [CrossRef]
- Chen, S.-L. A Power-Efficient Adaptive Fuzzy Resolution Control System for Wireless Body Sensor Networks. IEEE Access 2015, 3, 743–751. [Google Scholar] [CrossRef]
- Chen, S.-L.; Tuan, M.-C.; Lee, H.-Y.; Lin, T.-L. VLSI Implementation of a Cost-Efficient Micro Control Unit with an Asymmetric Encryption for Wireless Body Sensor Networks. IEEE Access 2017, 5, 4077–4086. [Google Scholar] [CrossRef]
- Taylor, W.; Shah, S.A.; Dashtipour, K.; Zahid, A.; Abbasi, Q.; Imran, M. An Intelligent Non-Invasive Real-Time Human Activity Recognition System for Next-Generation Healthcare. Sensors 2020, 20, 2653. [Google Scholar] [CrossRef]
- “3GPP Specification Series: 38series”. 3GPP. Available online: https://www.3gpp.org/DynaReport/38-series.htm (accessed on 22 February 2019).
- David, K.C. Field and Wave Electromagnetics, 2nd ed.; Addison-Wesley Publishing Company: Reading, MA, USA, 1989. [Google Scholar]
- Tung, W.-S.; Rao, P.-Z.; Chen, W.-M. A millimeter-wave antenna on low cost FR4 substrate. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019. [Google Scholar]
- Roy, J.S. Multiple-Antenna Techniques in Wireless Communication-Technical Aspects. Int. J. Inf. Commun. Technol. Digit. Converg. 2016, 1, 24–32. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Henderson, R.; Pierce, R.; Aroor, S.; Arzola, J.; Miller, C.; Kumar, H.; Ei, T.; Blanchard, A.; Fooshe, D.; Schluper, B.; et al. Millimeter-wave performance of broadband aperture antenna on laminates. In Proceedings of the AMTA 2015, Long Beach, CA, USA, 11–16 October 2015. [Google Scholar]
- Fan, Y.; Wang, J.; Li, Y.; Zhang, J.; Han, Y.; Qu, S. Low-RCS and High-Gain Circularly Polarized Metasurface Antenna. IEEE Trans. Antennas Propag. 2019, 67, 7197–7203. [Google Scholar] [CrossRef]
- Chang, L.; Li, Y.; Zhang, Z.; Wang, S.; Feng, Z. Planar Air-Filled Terahertz Antenna Array Based on Channelized Coplanar Waveguide Using Hierarchical Silicon Bulk Micromachining. IEEE Trans. Antennas Propag. 2018, 66, 5318–5325. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Xie, M.; Xia, H.; Ma, X.; Cui, T.J. Low-Cost Aperture-Coupled 60-GHz-Phased Matching Network. IEEE Trans. Antennas Propag. 2017, 65, 6355–6362. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Xia, H.; Ma, X.; Cui, T.J. A Low-Cost and High-Gain 60-GHz Differential Phased Array Antenna in PCB Process. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1281–1291. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.; Choi, J. A 28 GHz 5G Phased Array Antenna with Air-Hole Slots for Beam Width Enhancement. Appl. Sci. 2019, 9, 4204. [Google Scholar] [CrossRef]
- Liu, D.; Gu, X.; Baks, C.W.; Valdes-Garcia, A. Antenna-in-Package Design Considerations for Ka-Band 5G Communication Applications. IEEE Trans. Antennas Propag. 2017, 65, 6372–6379. [Google Scholar] [CrossRef]
- Baniya, P.; Bisognin, A.; Sain, A.; Luxey, C. Chip-to-Chip Switched Beam 60 GHz Circular Patch Planar Antenna Array and Pattern Considerations. IEEE Trans. Antennas Propag. 2018, 66, 1776–1787. [Google Scholar] [CrossRef]
- Kaouach, H. Wideband high-efficiency unit-cell for 1-bit and 2-bit transmit-arrays operating in X-band. In Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 2320–2324. [Google Scholar]
- Ma, Q.; Chung, H.; Yin, Y.; Kanar, T.; Zihir, S.; Rebeiz, G.M. A 5G 24-30 GHz 2 × 32 element dual-polarized dual-beam phased array base-station for 2x2 MIMO systems. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–5. [Google Scholar]
- Van Tonder, G.; Meyer, P. Beamforming Techniques for a Quad-Mode Antenna Array. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 31 March–5 April 2019; pp. 1–4. [Google Scholar]
- Shu, J.; Xu, G.; Peng, H.; Mao, J. An Electrically Steerable Parasitic Array Radiator in Package Based on Liquid Crystal. IEEE Trans. Antennas Propag. 2019, 18, 2365–2369. [Google Scholar] [CrossRef]
- Valdes-Garcia, A.; Sadhu, B.; Gu, X.; Tousi, Y.; Liu, D.; Reynolds, S.K.; Haillin, J.; Sahl, S.; Rexberg, L. Circuit and antenna-in-package innovations for scaled mmWave 5G phased array modules. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–8. [Google Scholar]
Maximum Angle θmax (degree) | Wavelength λ at 28 GHz (mm) | Antenna Spacing d (mm) |
---|---|---|
10 | 10.71 | 9.13 |
20 | 10.71 | 7.98 |
30 | 10.71 | 7.14 |
40 | 10.71 | 6.52 |
50 | 10.71 | 6.07 |
60 | 10.71 | 5.74 |
70 | 10.71 | 5.52 |
80 | 10.71 | 5.40 |
References | The Unit Cells Structure | The Bandwidth of Return Loss | The Peak Gain of the Array | Evaluated Peak Gain of the Unit Cell | The Dimensions of the Antenna Module | Material |
---|---|---|---|---|---|---|
[27] | 2 × 2 | 9.2–10.8 GHz | 7.5 dB 10.8–14 GHz | 2.5dBi | 112 mm × 112 mm | Rogers RT4735LZ |
[28] | 2 × 2 | 238.4–309.5 GHz | 10.1 dB at 71.1 GHz | 8 dBi | 3 × 1.5 mm² | silicon |
[29] | 4 × 4 | 57.2–64.5 GHz | 6.9 dBi at 62 GHz | 7.5 dBi | 14 mm × 14 mm × 0.925 mm | Rogers 5880 |
[30] | 4 × 4 | 12 GHz | 8.9 dBi at 12 GHz | 10.1 dBi | N/A | RO3003 |
[31] | 1 × 8 | 27.2–29.2 GHz | 10.33 dBi at 29.2 GHz | 6 dBi | 130 mm × 42 mm × 0.127 mm | Taconic RF-35 |
[32] | 4 × 4 | 0.8 GHz | 3.8 dBi at 30.5 GHz | 6 dBi | 6.85 × 6.85 cm² | organic |
[33] | 2 × 2 | N/A | 4.5 dBi at 60 GHz | −1.5 dBi | 4.5 mm × 3 mm | RO4003C |
[34] | 1 × 2 | 9.39–10.26 GHz | N/A | 4.8 dBi (Simulated) | 15 × 1 5 mm² | RO4003 |
[35] | 2 × 32 2 × 2 beamformer chips | 23.5–30.5 GHz | EIRP 46 dBm | 2~3 dBi | 32 elements (5.3 mm) 2 × 2 beamformer (0.5 mm) | Megtron-6 |
[36] | 2 × 2 | N/A | 15 dBi at 20 GHz | 9 dBi | 2 × 2 Quad-Mode Antenna Array (QMA) | N/A |
[37] | Yagi–Uda antenna | 26.86–28.87 GHz | 6.03 dB at 26.86 GHz | 6.03 dBi | 25 mm × 15 mm | Rogers 5880 |
[38] | 2 × 2 × 14 | 28–30 GHz | EIRP 54dBm | 3~4 dBi | 70 mm × 70 mm | N/A |
This study | 2 × 2 | 26.5~29.5 GHz | 14.4 dB at 28 GHz | 10.6 dBi | 18 mm × 14 mm × 0.71 mm | FR4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tung, W.-S.; Chiang, W.-Y.; Liu, C.-K.; Chen, C.-A.; Rao, P.-Z.; Abu, P.A.R.; Chen, W.-M.; Asadi, F.; Chen, S.-L. Low Cost AIP Design in 5G Flexible Antenna Phase Array System Application. Micromachines 2020, 11, 851. https://doi.org/10.3390/mi11090851
Tung W-S, Chiang W-Y, Liu C-K, Chen C-A, Rao P-Z, Abu PAR, Chen W-M, Asadi F, Chen S-L. Low Cost AIP Design in 5G Flexible Antenna Phase Array System Application. Micromachines. 2020; 11(9):851. https://doi.org/10.3390/mi11090851
Chicago/Turabian StyleTung, Wei-Shin, Wei-Yuan Chiang, Chih-Kai Liu, Chiung-An Chen, Pei-Zong Rao, Patricia Angela R. Abu, Wan-Ming Chen, Faisal Asadi, and Shih-Lun Chen. 2020. "Low Cost AIP Design in 5G Flexible Antenna Phase Array System Application" Micromachines 11, no. 9: 851. https://doi.org/10.3390/mi11090851
APA StyleTung, W.-S., Chiang, W.-Y., Liu, C.-K., Chen, C.-A., Rao, P.-Z., Abu, P. A. R., Chen, W.-M., Asadi, F., & Chen, S.-L. (2020). Low Cost AIP Design in 5G Flexible Antenna Phase Array System Application. Micromachines, 11(9), 851. https://doi.org/10.3390/mi11090851