# Comparison of Swing and Tilting Check Valves Flowing Compressible Fluids

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Numerical Methods

#### 2.1. Physic Model

#### 2.2. Numerical Model

^{6}, which means that there is a high-intensity turbulent flow. Thus, the realizable k-ε turbulence model is adopted to solve the flow fields together with the Navier–Stokes equations and energy equation. The corresponding equations are as follows:

_{v}and C

_{p}stand for specific heat, Pr stands for the Prandtl number, and τ

_{ij}stands for viscous stress. As for the realizable k-ε turbulence model, it has been described in our previous study [34,35,36].

_{g}+ M

_{h}+ M

_{f}is the resultant moment acting on the valve disc, M

_{g}stands for the gravity moment, M

_{h}stands for the hydrodynamic moment, and M

_{f}stands for the friction moment. I stands for the moment of the inertia of the valve disc. α stands for the angle of the valve seat. θ stands for the valve opening angle. For the investigated swing check valve, the maximum valve opening is 45°, while for the investigated tilting check valve, the maximum valve opening is 50°.

## 3. Results

#### 3.1. The Swing Check Valve

#### 3.2. The Tilting Check Valve

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Lai, Z.; Li, Q.; Karney, B.W.; Yang, S.; Wu, D.; Zhang, F. Numerical Simulation of a Check Valve Closure Induced by Pump Shutdown. J. Hydraul. Eng.
**2018**, 144, 06018013. [Google Scholar] [CrossRef] - Yu, J.; Yu, S. Numerical and experimental research of flow and sound fields in an axial-flow check valve and its optimization. Adv. Mech. Eng.
**2015**, 7, 168781401561982. [Google Scholar] [CrossRef] [Green Version] - Yang, Z.; Zhou, L.; Dou, H.; Lu, C.; Luan, X. Water hammer analysis when switching of parallel pumps based on contra-motion check valve. Ann. Nucl. Energy
**2020**, 139, 107275. [Google Scholar] [CrossRef] - Yang, Z.; Chen, B.; Huang, W.; Han, W. Sensitivity Analysis and Design Improvement of Contra-Motion Check Valve. In Proceedings of the 2013 21st International Conference on Nuclear Engineering. Chengdu, China, 29 July–2 August 2013. [Google Scholar]
- Xu, H.; Guang, Z.M.; Qi, Y.Y. Hydrodynamic characterization and optimization of Contra-push check valve by numerical simulation. Ann. Nucl. Energy
**2011**, 38, 1427–1437. [Google Scholar] [CrossRef] - Ballun, J.V. A methodology for predicting check valve slam. J. Am. Water Works Assoc.
**2007**, 99, 60–65. [Google Scholar] [CrossRef] - Lee, S.; Kim, T.; Lee, S.; Park, S. Degradation mechanism of check valves in nuclear power plants. Ann. Nucl. Energy
**2010**, 37, 621–627. [Google Scholar] [CrossRef] - Lee, T.S.; Leow, L.C. Numerical study on effects of check valve closure flow conditions on pressure surges in pumping station with air entrainment. Int. J. Numer. Methods Fluids
**2001**, 35, 117–124. [Google Scholar] [CrossRef] - Marcinkiewicz, J.; Adamkowski, A.; Lewandowski, M.; Janicki, W. Experimental investigation of static characteristics of swing and tilting disc check valves. In Proceedings of the 2016 24th International Conference on Nuclear Engineering, Charlotte, NC, USA, 26–30 June 2016. [Google Scholar]
- Dokoupil, P.; Himr, D.; Habán, V. Experimental analysis of static and dynamic properties of the check valves. EPJ Web Conf.
**2019**, 213, 2013. [Google Scholar] [CrossRef] - Zhang, X.; Zhang, T.; Hou, Y.; Zhu, K.; Huang, Z.; Wu, K. Local loss model of dividing flow in a bifurcate tunnel with a small angle. J. Zhejiang Univ. Sci. A
**2019**, 20, 21–35. [Google Scholar] [CrossRef] - Liu, G.; Lin, Y.; Guan, G.; Yu, Y. Numerical research on the anti-sloshing effect of a ring baffle in an independent type C LNG tank. J. Zhejiang Univ. Sci.
**2018**, 19, 758–773. [Google Scholar] [CrossRef] - Leati, E.; Scheidl, R.; Ploeckinger, A. On the Dynamic Behavior of Check Valves for High Frequency Oscillation Pumps. In Proceedings of the ASME/BATH 2013 Symposium on Fluid Power and Motion Control, Sarasota, FL, USA, 6–9 October 2013. [Google Scholar]
- Knutson, A.L.; Van de Ven, J.D. Modeling and Experimental Validation of a Reed Check Valve for Hydraulic Applications. In Proceedings of the BATH/ASME 2016 Symposium on Fluid Power and Motion Control, Bath, UK, 7–9 September 2016. [Google Scholar]
- Zhang, J.; Wang, D.; Xu, B.; Gan, M.; Pan, M.; Yang, H. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. J. Zhejiang Univ. Sci.
**2018**, 19, 417–430. [Google Scholar] [CrossRef] - Jin, Z.; Gao, Z.; Chen, M.; Qian, J. Parametric study on Tesla valve with reverse flow for hydrogen decompression. Int. J. Hydrogen Energy
**2018**, 43, 8888–8896. [Google Scholar] [CrossRef] - Qian, J.; Chen, M.; Gao, Z.; Jin, Z. Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression. Energy
**2019**, 179, 647–654. [Google Scholar] [CrossRef] - Qian, J.; Wu, J.; Gao, Z.; Wu, A.; Jin, Z. Hydrogen decompression analysis by multi-stage Tesla valves for hydrogen fuel cell. Int. J. Hydrogen Energy
**2019**, 44, 13666–13674. [Google Scholar] [CrossRef] - Leutwyler, Z.; Dalton, C. A Computational Study of Torque and Forces Due to Compressible Flow on a Butterfly Valve Disk in Mid-stroke Position. ASME J. Fluids Eng.
**2006**, 128, 1074–1082. [Google Scholar] [CrossRef] - Sibilla, S.; Gallati, M. Hydrodynamic Characterization of a Nozzle Check Valve by Numerical Simulation. ASME J. Fluids Eng.
**2008**, 130, 121101. [Google Scholar] [CrossRef] - Li, G.; Liou, J.C.P. Swing Check Valve Characterization and Modeling during Transients. ASME J. Fluids Eng.
**2003**, 125, 1043–1050. [Google Scholar] [CrossRef] - Lai, Z.; Karney, B.; Yang, S.; Wu, D.; Zhang, F. Transient performance of a dual disc check valve during the opening period. Ann. Nucl. Energy
**2017**, 101, 15–22. [Google Scholar] [CrossRef] - Li, W.; Gao, Z.; Jin, Z.; Qian, J. Transient Study of Flow and Cavitation Inside a Bileaflet Mechanical Heart Valve. Appl. Sci.
**2020**, 10, 2548. [Google Scholar] [CrossRef] [Green Version] - Farrell, R.; Ezekoye, L.I.; Rain, M. Check valve flow and disk lift simulation using CFD. In Proceedings of the ASME 2017 Pressure Vessels and Piping Conference, Volume 7: Operations, Applications and Components, Waikoloa, HI, USA, 16–20 July 2017. [Google Scholar]
- Tran, P.D. Pressure Transients Caused by Tilting-Disk Check-Valve Closure. J. Hydraul. Eng.
**2015**, 141, 4014081. [Google Scholar] [CrossRef] - Qian, J.; Hou, C.; Li, X.; Jin, Z. Actuation Mechanism of Microvalves: A Review. Micromachines
**2020**, 11, 172. [Google Scholar] [CrossRef] [Green Version] - Zhang, J.; Yang, M.; Xu, B. Design and experimental research of a miniature digital hydraulic valve. Micromachines
**2018**, 9, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Qian, J.Y.; Li, X.J.; Wu, Z.; Jin, Z.J.; Sunden, B. A comprehensive review on liquid–liquid two-phase flow in microchannel: Flow pattern and mass transfer. Microfluid. Nanofluid.
**2019**, 23, 116. [Google Scholar] [CrossRef] - Qian, J.Y.; Li, X.J.; Wu, Z.; Jin, Z.J.; Zhang, J.; Sunden, B. Slug formation analysis of liquid–liquid two-phase flow in T-junction microchannels. J. Therm. Sci. Eng. Appl.
**2019**, 11, 051017. [Google Scholar] [CrossRef] - Bui, G.T.; Wang, J.; Lin, J. Optimization of micropump performance utilizing a single membrane with an active check valve. Micromachines
**2017**, 9, 1. [Google Scholar] [CrossRef] [Green Version] - Ou, K.; Jackson, J.; Burt, H.; Chiao, M. Microspheres as resistive elements in a check valve for low pressure and low flow rate conditions. Lab Chip
**2012**, 12, 4372. [Google Scholar] [CrossRef] - Qian, J.; Chen, M.; Liu, X.; Jin, Z. A numerical investigation of the flow of nanofluids through a micro Tesla valve. J. Zhejiang Univ. Sci. A
**2019**, 20, 50–60. [Google Scholar] [CrossRef] - Zhang, X.; Zhang, Z. Microfluidic Passive Flow Regulatory Device with an Integrated Check Valve for Enhanced Flow Control. Micromachines
**2019**, 10, 653. [Google Scholar] [CrossRef] [Green Version] - Jin, Z.; Gao, Z.; Zhang, M.; Liu, B.; Qian, J. Computational fluid dynamics analysis on orifice structure inside valve core of pilot-control angle globe valve. Proc. Inst. Mech. Eng. Part C
**2018**, 232, 2419–2429. [Google Scholar] [CrossRef] - Jin, Z.; Qiu, C.; Jiang, C.; Wu, J.; Qian, J. Effect of valve core shapes on cavitation flow through a sleeve regulating valve. J. Zhejiang Univ. Sci. A
**2020**, 21, 1–14. [Google Scholar] [CrossRef] - Jin, Z.; Gao, Z.; Zhang, M.; Qian, J. Pressure Drop Analysis of Pilot-Control Globe Valve With Different Structural Parameters. ASME J. Fluids Eng.
**2017**, 139, 091102. [Google Scholar] [CrossRef] - Barton, P.T.; Obadia, B.; Drikakis, D. A conservative level-set based method for compressible solid/fluid problems on fixed grids. J. Comput. Phys.
**2011**, 230, 7867–7890. [Google Scholar] [CrossRef] - Tsoutsanis, P.; Titarev, V.A.; Drikakis, D. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions. J. Comput. Phys.
**2011**, 230, 1585–1601. [Google Scholar] [CrossRef] [Green Version] - Chen, F.; Qian, J.; Chen, M.; Zhang, M.; Chen, L.; Jin, Z. Turbulent compressible flow analysis on multi-stage high pressure reducing valve. Flow Meas. Instrum.
**2018**, 61, 26–37. [Google Scholar] [CrossRef] - Qian, J.; Wei, L.; Zhang, M.; Chen, F.; Chen, L.; Jiang, W.; Jin, Z. Flow rate analysis of compressible superheated steam through pressure reducing valves. Energy
**2017**, 135, 650–658. [Google Scholar] [CrossRef]

**Figure 1.**The structure of the investigated check valves: (

**a**) the swing check valve; (

**b**) the tilting check valve.

**Figure 5.**Pressure and temperature distributions under different mass flow rates: (

**a**) pressure distribution; (

**b**) temperature distribution.

**Figure 10.**Pressure and temperature distributions under different mass flow rates: (

**a**) pressure distribution; (

**b**) temperature distribution.

Grid Number × 10^{6} | Pressure Difference/Pa | Error/% |
---|---|---|

0.8 | 1419.20 | −1.6% |

1.8 | 1442.69 | - |

3.7 | 1433.62 | −0.63% |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gao, Z.-x.; Liu, P.; Yue, Y.; Li, J.-y.; Wu, H.
Comparison of Swing and Tilting Check Valves Flowing Compressible Fluids. *Micromachines* **2020**, *11*, 758.
https://doi.org/10.3390/mi11080758

**AMA Style**

Gao Z-x, Liu P, Yue Y, Li J-y, Wu H.
Comparison of Swing and Tilting Check Valves Flowing Compressible Fluids. *Micromachines*. 2020; 11(8):758.
https://doi.org/10.3390/mi11080758

**Chicago/Turabian Style**

Gao, Zhi-xin, Ping Liu, Yang Yue, Jun-ye Li, and Hui Wu.
2020. "Comparison of Swing and Tilting Check Valves Flowing Compressible Fluids" *Micromachines* 11, no. 8: 758.
https://doi.org/10.3390/mi11080758