Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cashdollar, K.L.; Zlochower, I.A.; Green, G.M.; Thomas, R.A.; Hertzberg, M. Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process. Ind. 2000, 13, 327–340. [Google Scholar] [CrossRef]
- Licht, S.; Cui, B.; Wang, B.; Li, F.-F.; Lau, J.; Liu, S. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–640. [Google Scholar] [CrossRef] [PubMed]
- Barbir, F. PEM electrolysis for production of hydrogen from renewable energy sources. Sol. Energy 2005, 78, 661–669. [Google Scholar] [CrossRef]
- Chen, P.; Wu, X.; Lin, J.; Tan, K.L. High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures. Science 1999, 285, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, Z.; Li, C.; Tang, T.; Liu, X.; Han, S.; Lei, B.; Zhou, C. Detection of NO2down to ppb Levels Using Individual and Multiple In2O3Nanowire Devices. Nano Lett. 2004, 4, 1919–1924. [Google Scholar] [CrossRef]
- Kim, C.K.; Lee, J.; Choi, S.; Noh, I.; Kim, H.; Cho, N.; Hong, C.; Jang, G. Pd- and Pt-SiC Schottky diodes for detection of H2 and CH4 at high temperature. Sens. Actuators B Chem. 2001, 77, 455–462. [Google Scholar] [CrossRef]
- Cheng, C.-C.; Tsai, Y.-Y.; Lin, K.-W.; Chen, H.-I.; Liu, W.-C. Hydrogen sensing properties of a Pt-oxide-Al0.24Ga0.76As high-electron-mobility transistor. Appl. Phys. Lett. 2005, 86, 112103. [Google Scholar] [CrossRef]
- Wadell, C.; Syrenova, S.; Langhammer, C. Plasmonic Hydrogen Sensing with Nanostructured Metal Hydrides. ACS Nano 2014, 8, 11925–11940. [Google Scholar] [CrossRef]
- Isobe, Y.; Yamauchi, M.; Ikeda, R.; Kitagawa, H. A study on hydrogen adsorption of polymer protected Pt nanoparticles. Synth. Met. 2003, 135, 757–758. [Google Scholar] [CrossRef]
- Shin, W.; Imai, K.; Izu, N.; Murayama, N. Thermoelectric Thick-Film Hydrogen Gas Sensor Operating at Room Temperature. Jpn. J. Appl. Phys. 2001, 40, L1232–L1234. [Google Scholar] [CrossRef]
- Stolbov, S.; Rahman, T.S. First Principles Study of Adsorption, Diffusion and Dissociation of NH_3 on Ni and Pd Surfaces. arXiv 2005, arXiv:cond-mat/0501060. [Google Scholar]
- Offermans, W.; Jansen, A.; Van Santen, R.; Novell-Leruth, G.; Ricart, J.; Perez-Ramirez, J. Ammonia Dissociation on Pt {100}, Pt {111}, and Pt {211}: A Comparative Density Functional Theory Study. J. Phys. Chem. C 2007, 111, 17551–17557. [Google Scholar] [CrossRef]
- Gohndrone, J.M. Ammonia adsorption and decomposition on several faces of platinum. J. Vac. Sci. Technol. A 1989, 7, 1986–1990. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Labat, F.; Ciofini, I.; Pauporté, T.; Adelung, R. Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuators B Chem. 2018, 254, 1259–1270. [Google Scholar] [CrossRef]
- Buttner, W.; Post, M.B.; Burgess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. Int. J. Hydrogen Energy 2011, 36, 2462–2470. [Google Scholar] [CrossRef]
- Wu, J.; Fedder, G.K.; Carley, L.R. A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50-/Spl Mu/G//Spl Radic/Hz Monolithic CMOS MEMS Accelerometer. IEEE J. Solid-State Circuits 2004, 39, 722–730. [Google Scholar]
- Hanay, M.S.; Kelber, S.; Naik, A.K.; Chi, D.; Hentz, S.; Bullard, E.C.; Colinet, E.; Duraffourg, L.; Roukes, M.L. Single-protein nanomechanical mass spectrometry in real time. Nat. Nanotechnol. 2012, 7, 602–608. [Google Scholar] [CrossRef]
- Abeysinghe, D.; Dasgupta, S.; Boyd, J.; Jackson, H. A novel MEMS pressure sensor fabricated on an optical fiber. IEEE Photon- Technol. Lett. 2001, 13, 993–995. [Google Scholar] [CrossRef]
- Gajula, D.; Jahangir, I.; Koley, G. High Temperature AlGaN/GaN Membrane Based Pressure Sensors. Micromachines 2018, 9, 207. [Google Scholar] [CrossRef]
- Jha, C.M.; Bahl, G.; Melamud, R.; Chandorkar, S.A.; Hopcroft, M.A.; Kim, B.; Agarwal, M.; Salvia, J.; Mehta, H.; Kenny, T.W. Cmos-Compatible Dual-Resonator MEMS Temperature Sensor with Milli-Degree Accuracy. In Proceedings of the TRANSDUCERS 2007—2007 International Solid-State Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 229–232. [Google Scholar]
- Azevedo, R.G.; Jones, D.G.; Jog, A.V.; Jamshidi, B.; Myers, D.R.; Chen, L.; Fu, X.-A.; Mehregany, M.; Wijesundara, M.B.J.; Pisano, A.P. A SiC MEMS Resonant Strain Sensor for Harsh Environment Applications. IEEE Sens. J. 2007, 7, 568–576. [Google Scholar] [CrossRef]
- Augustyniak, I.; Dziuban, J.; Knapkiewicz, P.; Matusiak, M.; Olszacki, M.; Pons, P. MEMS high-doses radiation sensor. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 1503–1506. [Google Scholar]
- Voiculescu, I.; Nordin, A.N. Acoustic wave based MEMS devices for biosensing applications. Biosens. Bioelectron. 2012, 33, 1–9. [Google Scholar] [CrossRef]
- Nomani, W.; Kersey, D.; James, J.; Diwan, D.; Vogt, T.; Webb, R.A.; Koley, G. Highly sensitive and multidimensional detection of NO2 using In2O3 thin films. Sens. Actuators B Chem. 2011, 160, 251–259. [Google Scholar] [CrossRef]
- Singh, A.; Uddin, A.; Sudarshan, T.; Koley, G. Tunable Reverse-Biased Graphene/Silicon Heterojunction Schottky Diode Sensor. Small 2013, 10, 1555–1565. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Uddin, M.A.; Tolson, J.T.; Maire-Afeli, H.; Sbrockey, N.; Tompa, G.S.; Spencer, M.G.; Vogt, T.; Sudarshan, T.S.; Koley, G. Electrically tunable molecular doping of graphene. Appl. Phys. Lett. 2013, 102, 043101. [Google Scholar] [CrossRef]
- Uddin, A.; Singh, A.; Sudarshan, T.S.; Koley, G. Functionalized graphene/silicon chemi-diode H2 sensor with tunable sensitivity. Nanotechnology 2014, 25, 125501. [Google Scholar] [CrossRef] [PubMed]
- Craighead, H.G. Nanoelectromechanical Systems. Science 2000, 290, 1532–1535. [Google Scholar] [CrossRef]
- Tamayo, J. Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control. J. Appl. Phys. 2005, 97, 44903. [Google Scholar] [CrossRef]
- Pinnaduwage, L.A.; Boiadjiev, V.; Hawk, J.E.; Thundat, T. Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. Appl. Phys. Lett. 2003, 83, 1471–1473. [Google Scholar] [CrossRef]
- Huang, X.M.H.; Manolidis, M.; Jun, S.C.; Hone, J. Nanomechanical hydrogen sensing. Appl. Phys. Lett. 2005, 86, 143104. [Google Scholar] [CrossRef]
- Koley, G.; Qazi, M.; Lakshmanan, L.; Thundat, T. Gas sensing using electrostatic force potentiometry. Appl. Phys. Lett. 2007, 90, 173105. [Google Scholar] [CrossRef]
- Fan, R.; Zolper, J.C. Wide Energy Bandgap Electronic Devices; World Scientific: Singapore, 2003. [Google Scholar]
- Ambacher, O.; Smart, J.; Shealy, J.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef]
- Zhou, Q.; Wong, K.-Y.; Chen, W.; Chen, K.J. Wide-Dynamic-Range Zero-Bias Microwave Detector Using AlGaN/GaN Heterojunction Field-Effect Diode. IEEE Microw. Wirel. Components Lett. 2010, 20, 277–279. [Google Scholar] [CrossRef]
- Villanueva, L.G.; Plaza, J.A.; Montserrat, J.M.; Perez, F.; Bausells, J. Crystalline silicon cantilevers for piezoresistive detection of biomolecular forces. Microelectron. Eng. 2008, 85, 1120–1123. [Google Scholar] [CrossRef]
- Thaysen, J.; Boisen, A.; Hansen, O.; Bouwstra, S. Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement. Sens. Actuators A Phys. 2000, 83, 47–53. [Google Scholar] [CrossRef]
- Qazi, M.; DeRoller, N.; Talukdar, A.; Koley, G. III-V Nitride based piezoresistive microcantilever for sensing applications. Appl. Phys. Lett. 2011, 99, 193508. [Google Scholar] [CrossRef]
- Talukdar, A.; Koley, G. Impact of Biasing Conditions on Displacement Transduction by III-Nitride Microcantilevers. IEEE Electron Device Lett. 2014, 35, 1299–1301. [Google Scholar] [CrossRef]
- Bayram, F.; Khan, D.; Li, H.; Hossain, M.; Koley, G. Piezotransistive GaN microcantilevers based surface work function measurements. Jpn. J. Appl. Phys. 2018, 57, 040301. [Google Scholar] [CrossRef]
- Bayram, F.; Gajula, D.; Khan, D.; Gorman, S.; Koley, G. Nonlinearity in piezotransistive GaN microcantilevers. J. Micromech. Microeng. 2019, 29, 125011. [Google Scholar] [CrossRef]
- Talukdar, A.; Khan, M.F.; Lee, N.; Kim, S.; Thundat, T.; Koley, G. Piezotransistive transduction of femtoscale displacement for photoacoustic spectroscopy. Nat. Commun. 2015, 6, 7885. [Google Scholar] [CrossRef]
- Catchpole, K.R.; Polman, A. Plasmonic solar cells. Opt. Express 2008, 16, 21793. [Google Scholar] [CrossRef]
- Reineck, P.; Lee, G.P.; Brick, D.; Karg, M.; Mulvaney, P.; Bach, U. A Solid?State Plasmonic Solar Cell via Metal Nanoparticle Self?Assembly. Adv. Mater. 2012, 24, 4750–4755. [Google Scholar] [CrossRef] [PubMed]
- Genevet, P.; Lin, J.; Kats, M.A.; Capasso, F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun. 2012, 3, 1278. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.; Bayram, F.; Gajula, D.; Talukdar, A.; Li, H.; Koley, G. Plasmonic amplification of photoacoustic waves detected using piezotransistive GaN microcantilevers. Appl. Phys. Lett. 2017, 111, 062102. [Google Scholar] [CrossRef]
- Rashid, T.-R.; Phan, D.-T.; Chung, G.-S. A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Sens. Actuators B Chem. 2013, 185, 777–784. [Google Scholar] [CrossRef]
- Tobiska, P.; Hugon, O.; Trouillet, A.; Gagnaire, H. An integrated optic hydrogen sensor based on SPR on palladium. Sensors Actuators B: Chem. 2001, 74, 168–172. [Google Scholar] [CrossRef]
- Mishra, S.K.; Kumari, D.; Gupta, B.D. Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sens. Actuators B Chem. 2012, 171, 976–983. [Google Scholar] [CrossRef]
- Khan, D.; Gajula, D.; Bayram, F.; Koley, G. Plasmonic Absorption Enabled Analyte Detection Using Piezotransistive Microcantilevers. In Proceedings of the 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), Portland, OR, USA, 14–17 October 2018; pp. 1–4. [Google Scholar]
- Kim, H.; Thompson, R.; Tilak, V.; Prunty, T.; Shealy, J.; Eastman, L.F. Effects of SiN passivation and high-electric field on AlGaN-GaN HFET degradation. IEEE Electron Device Lett. 2003, 24, 421–423. [Google Scholar] [CrossRef]
- Kordos, P.; Kudela, P.; Gregušová, D.; Donoval, D. The effect of passivation on the performance of AlGaN/GaN heterostructure field-effect transistors. Semicond. Sci. Technol. 2006, 21, 1592–1596. [Google Scholar] [CrossRef]
- Green, B.; Chu, K.; Chumbes, E.; Smart, J.; Shealy, J.; Eastman, L.F. The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2000, 21, 268–270. [Google Scholar] [CrossRef]
- Ghosh, S.; Nitnavare, R.; Dewle, A.; Tomar, G.B.; Chippalkatti, R.; More, P.; Kitture, R.; Kale, S.; Bellare, J.; Chopade, B.A. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: Anticancer and antioxidant activities. Int. J. Nanomed. 2015, 10, 7477–7490. [Google Scholar] [CrossRef]
- Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.-Y.; Ruan, F.; Yang, Z.; Zheng, N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2010, 6, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, M.; Kobayashi, H.; Kitagawa, H. Hydrogen Storage Mediated by Pd and Pt Nanoparticles. ChemPhysChem 2009, 10, 2566–2576. [Google Scholar] [CrossRef] [PubMed]
- Kemppainen, E.; Bodin, A.; Sebok, B.; Pedersen, T.; Seger, B.; Mei, B.; Bae, D.; Vesborg, P.C.K.; Halme, J.; Hansen, O.; et al. Scalability and feasibility of photoelectrochemical H2evolution: The ultimate limit of Pt nanoparticle as an HER catalyst. Energy Environ. Sci. 2015, 8, 2991–2999. [Google Scholar] [CrossRef]
- Arboleda, N.B.; Kasai, H.; Diño, W.A.; Nakanishi, H. Potential Energy of H2Dissociation and Adsorption on Pt(111) Surface: First-Principles Calculation. Jpn. J. Appl. Phys. 2007, 46, 4233–4237. [Google Scholar] [CrossRef]
- Kim, N.-H.; Choi, S.-J.; Yang, D.-J.; Bae, J.; Park, J.; Kim, I.-D. Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer. Sens. Actuators B Chem. 2014, 193, 574–581. [Google Scholar] [CrossRef]
- Lechuga, L.M.; Calle, A.; Golmayo, D.; Briones, F. Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky barrier sensors. Sens. Actuators B Chem. 1992, 7, 614–618. [Google Scholar] [CrossRef]
- Watkins, W.L.; Borensztein, Y. Ultrasensitive and fast single wavelength plasmonic hydrogen sensing with anisotropic nanostructured Pd films. Sens. Actuators B Chem. 2018, 273, 527–535. [Google Scholar] [CrossRef]
- Ndaya, C.C.; Javahiraly, N.; Brioude, A. Recent Advances in Palladium Nanoparticles-Based Hydrogen Sensors for Leak Detection. Sensors 2019, 19, 4478. [Google Scholar] [CrossRef]
- Gland, J.L.; Kollin, E.B. Ammonia adsorption on the Pt(111) AND Pt(S)-6(111) × (111) surfaces. Surf. Sci. 1981, 104, 478–490. [Google Scholar] [CrossRef]
- Mishra, S.K.; Tripathi, S.N.; Choudhary, V.; Gupta, B.D. SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens. Actuators B Chem. 2014, 199, 190–200. [Google Scholar] [CrossRef]
- Aarya, S.; Kumar, Y.; Chahota, R.K. Recent Advances in Materials, Parameters, Performance and Technology in Ammonia Sensors: A Review. J. Inorg. Organomet. Polym. Mater. 2019, 30, 269–290. [Google Scholar] [CrossRef]
- Bhatia, P.; Gupta, B.D. Surface Plasmon Resonance Based Fiber Optic Ammonia Sensor Utilizing Bromocresol Purple. Plasmonics 2012, 8, 779–784. [Google Scholar] [CrossRef]
- Modak, J. Haber process for ammonia synthesis. Resonance 2002, 7, 69–77. [Google Scholar] [CrossRef]
- Choudhary, T.; Sivadinarayana, C.; Goodman, D. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 2001, 72, 197–201. [Google Scholar] [CrossRef]
NP | H2 Concentration | Response Time | Signal-to-Noise Ratio (SNR) | Limit of Detection (LOD) |
---|---|---|---|---|
Pt | 1000 ppm | 13 s | 51 | ~15 ppm |
500 ppm | 7 s | 33.9 | ||
100 ppm | 12 s | 19.9 | ||
Pd | 1000 ppm | 9 s | 116.4 | ~12 ppm |
500 ppm | 13 s | 104.1 | ||
100 ppm | 20 s | 36.7 | ||
50 ppm | 26 s | 11.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.; Li, H.; Bayram, F.; Gajula, D.; Koley, G. Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers. Micromachines 2020, 11, 680. https://doi.org/10.3390/mi11070680
Khan D, Li H, Bayram F, Gajula D, Koley G. Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers. Micromachines. 2020; 11(7):680. https://doi.org/10.3390/mi11070680
Chicago/Turabian StyleKhan, Digangana, Hongmei Li, Ferhat Bayram, Durga Gajula, and Goutam Koley. 2020. "Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers" Micromachines 11, no. 7: 680. https://doi.org/10.3390/mi11070680
APA StyleKhan, D., Li, H., Bayram, F., Gajula, D., & Koley, G. (2020). Photoacoustic Detection of H2 and NH3 Using Plasmonic Signal Enhancement in GaN Microcantilevers. Micromachines, 11(7), 680. https://doi.org/10.3390/mi11070680